Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hadamard, J. Essai sur L’etude des Fonctions, Donn ‘ees par leur d’ Eveloppement de Taylor; Gauthier-Villars: Paris, France, 1892. [Google Scholar]
- Bessenyei, M. The Hermite–Hadamard Inequality in Beckenbach’s Setting. J. Math. Anal. Appl. 2010, 364, 366–383. [Google Scholar] [CrossRef]
- Shi, X.L.; Cao, J.; Li, X.; Zhang, J.; Gong, H.; Liu, S. Polyetheretherketone fiber-supported polyethylene glycols for phase-transfer catalysis in its surface layer. Colloids Surf. A Physicochem. Eng. Asp. 2024, 694, 134160. [Google Scholar] [CrossRef]
- Hanson, M.A. On sufficiency of the Kun-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef]
- Weir, T.; Mond, B. Preinvex functions in multiobjective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef]
- Noor, M.A. Hermite–Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
- Liu, Z.; Xu, Z.; Zheng, X.; Zhao, Y.; Wang, J. 3D path planning in threat environment based on fuzzy logic. J. Intell. Fuzzy Syst. 2024, 1, 7021–7034. [Google Scholar] [CrossRef]
- Mohan, S.R.; Neogy, S.K. On invex set and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef]
- Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966; Volume 4, pp. 8–13. [Google Scholar]
- Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130. [Google Scholar]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
- Afzal, W.; Prosviryakov, E.Y.; El-Deeb, S.M.; Almalki, Y. Some New Estimates of Her mite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions. Symmetry 2023, 15, 831. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Her mite–Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral Operators. Int. J. Comput. Intell. Syst. 2022, 15, 8. [Google Scholar] [CrossRef]
- Lai, K.K.; Mishra, S.K.; Bisht, J.; Hassan, M. Hermite–Hadamard Type Inclusions for Interval Valued Coordinated Preinvex Functions. Symmetry 2022, 14, 771. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-Type Inequalities for Interval-Valued Preinvex Functions via Riemann–Liouville Fractional Integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Zhou, H.; Saleem, M.S.; Nazeer, W.; Shah, A.F.; Zhou, H.; Saleem, M.S.; Nazeer, W.; Shah, A.F. Hermite-Hadamard Type Inequalities for Interval-Valued Exponential Type Pre-Invex Functions via Riemann-Liouville Fractional Integrals. Aims Math. 2022, 7, 2602–2617. [Google Scholar] [CrossRef]
- Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down h-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
- Noor, M.; Noor, K.; Rashid, S. Some New Classes of Preinvex Functions and Inequalities. Mathematics 2018, 7, 29. [Google Scholar] [CrossRef]
- Sun, W. Some Hermite–Hadamard Type Inequalities for Generalized h-Preinvex Function via Lo cal Fractional Integrals and Their Applications. Adv. Differ. Equ. 2020, 2020, 426. [Google Scholar] [CrossRef]
- Kashuri, A.; Liko, R. Hermite-Hadamard Type Inequalities for Generalized (s,m,φ)-Preinvex Godunova-Levin Functions. Rad Hrvatske akademije znanosti i umjetnosti. Mat. Znan. 2018, 2018, 63–75. [Google Scholar]
- Ali, S.; Ali, R.S.; Vivas-Cortez, M.; Mubeen, S.; Rahman, G.; Nisar, K.S.; Ali, S.; Ali, R.S.; Vivas-Cortez, M.; Mubeen, S.; et al. Some Fractional Integral Inequalities via h-Godunova-Levin Preinvex Function. AIMS Math. 2022, 7, 13832–13844. [Google Scholar] [CrossRef]
- Tariq, M.; Sahoo, S.K.; Ntouyas, S.K.; Alsalami, O.M.; Shaikh, A.A.; Nonlaopon, K. Some Hermite–Hadamard and Hermite–Hadamard–Fej´er Type Fractional Inclusions Pertaining to Different Kinds of Generalized Preinvexities. Symmetry 2022, 14, 1957. [Google Scholar] [CrossRef]
- Sitho, S.; Ali, M.A.; Budak, H.; Ntouyas, S.K.; Tariboon, J. Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus. Mathematics 2021, 9, 1666. [Google Scholar] [CrossRef]
- Latif, M.; Kashuri, A.; Hussain, S.; Delavar, R. Trapezium-Type Inequalities for h-Preinvex Func tions and Their Applications. Filomat 2022, 36, 3393–3404. [Google Scholar] [CrossRef]
- Delavar, M.R. New Bounds for Hermite-Hadamard’s Trapezoid and Mid-Point Type Inequalities via Fractional Integrals. Miskolc Math. Notes 2019, 20, 849. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, F.; Shi, P. Non-fragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Trans. Autom. Control 2023, 68, 6423–6430. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Y.; Zhao, D.; Shi, L. Online Pareto optimal control of mean-field stochastic multi-player systems using policy iteration. Sci. China Inf. Sci. 2024, 67, 140202:1–140202:17. [Google Scholar] [CrossRef]
- Jia, G.; Luo, J.; Cui, C.; Kou, R.; Tian, Y.; Schubert, M. Valley quantum interference modulated by hyperbolic shear polaritons. Phys. Rev. B 2023, 109, 155417. [Google Scholar] [CrossRef]
- Tian, F.; Liu, Z.; Zhou, J.; Chen, L.; Feng, X.T. Quantifying Post-peak Behavior of Rocks with Type-I, Type-II, and Mixed Fractures by Developing a Quasi-State-Based Peridynamics. Rock Mech. Rock Eng. 2024, 57, 4835–4871. [Google Scholar] [CrossRef]
- Guo, S.; Zuo, X.; Wu, W.; Yang, X.; Zhang, J.; Li, Y.; Huang, C.; Bu, J.; Zhu, S. Mitigation of tropospheric delay induced errors in TS-InSAR ground deformation monitoring. Int. J. Digit. Earth 2024, 17, 2316107. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [Google Scholar] [CrossRef]
- Chang, X.; Guo, J.; Qin, H.; Huang, J.; Wang, X.; Ren, P. Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients. Water Resour. Manag. 2024, 38, 3953–3972. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Christelle, M.; Sun, M.; Wen, Z.; Lin, Y.; Xu, J. Automated localization of mandibular landmarks in the construction of mandibular median sagittal plane. Eur. J. Med. Res. 2024, 29, 84. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Jin, C.; Fang, R.; Hua, R.; Zang, X.; Zhang, H. The indicative role of inflammatory index in the progression of periodontal attachment loss. Eur. J. Med. Res. 2023, 28, 287. [Google Scholar] [CrossRef] [PubMed]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite-Hadamard Inequalities for h-Preinvex Functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets, Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Cecconello, M.S.; Dorini, F.A.; Haeser, G. On fuzzy uncertainties on the logistic equation. Fuzzy Sets Syst. 2017, 328, 107–121. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, W.; Hua, R.; Wang, Y.; Li, Y.; Zhang, H. Promising dawn in tumor microenvironment therapy: Engineering oral bacteria. Int. J. Oral Sci. 2024, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- Chuai, Y.; Dai, B.; Liu, X.; Hu, M.; Wang, Y.; Zhang, H. Association of vitamin K, fibre intake and progression of periodontal attachment loss in American adults. BMC Oral Health 2023, 23, 303. [Google Scholar] [CrossRef]
- Kwiatkowska, M.; Kielan, K. Fuzzy logic and semiotic methods in modeling of medical concepts. Fuzzy Sets Syst. 2013, 214, 35–50. [Google Scholar] [CrossRef]
- Liu, X.; Dai, B.; Chuai, Y.; Hu, M.; Zhang, H. Associations between vitamin D levels and periodontal attachment loss. Clin. Oral Investig. 2023, 27, 4727–4733. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, C.; Li, W.; Huang, M.; Wu, W.; Koh, C.S.; Blaabjerg, F. A Novel Hybrid Excitation Magnetic Lead Screw and Its Transient Sub-Domain Analytical Model for Wave Energy Conversion. IEEE Trans. Energy Convers. 2024, 39, 1726–1737. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Y.; Jiang, Y.; Cao, Y.; Wang, Z.; Li, J.; Zhao, G. Release Pattern of Light Aromatic Hydrocarbons during the Biomass Roasting Process. Molecules 2024, 29, 1188. [Google Scholar] [CrossRef]
- Tang, H.; Li, Y.; Zhu, Z.; Zhan, Y.; Li, Y.; Li, K.; Wang, P.; Zhong, F.; Feng, W.; Yang, X. Rational design of high-performance epoxy/expandable microsphere foam with outstanding mechanical, thermal, and dielectric properties. J. Appl. Polym. Sci. 2024, 141, e55502. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, S.; Yang, Q.; Liew, S.C. Account Service Network: A Unified Decentralized Web 3.0 Portal With Credible Anonymity. IEEE Netw. 2023, 37, 101–108. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, T.; Han, L.; Feng, Z. Single-Stage Multi-Input Buck Type High-Frequency Link’s Inverters With Series and Simultaneous Power Supply. IEEE Trans. Power Electron. 2021, 37, 7411–7421. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, J.; Qin, S. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Technol. Sci. 2023, 66, 2996–3010. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, T.; Xu, S. Single-stage multi-input buck type high-frequency link’s inverters with multiwinding and time-sharing power supply. IEEE Trans. Power Electron. 2022, 37, 12763–12773. [Google Scholar] [CrossRef]
- Meng, S.; Meng, F.; Chi, H.; Chen, H.; Pang, A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J. Frankl. Inst. 2023, 360, 11397–11413. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Fuzzy Mathematics: Approximation Theory, Volume 251 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for-convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P. Metric Space of Fuzzy Sets: Theory and Application; World Scientific: Singapore, 1994. [Google Scholar]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic, Volume 295 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Costa, T.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
- Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions. Symmetry 2022, 14, 313. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Zaini, H.G.; Treanță, S.; Soliman, M.S. Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus. Mathematics 2022, 10, 534. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abuahalnaja, K. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
- Matłoka, M. On some Hadamard-type inequalities for (h 1, h 2)-preinvex functions on the co-ordinates. J. Inequalities Appl. 2013, 2013, 227. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Stojiljkovic, V. Hermite–Hadamard–type fractional–integral inequalities for (p, h)–convex fuzzy–interval–valued mappings. Electron. J. Math. 2023, 5, 18–28. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alohali, H.; Breaz, V.-D.; Alsalami, O.M.; Cotirla, L.-I.; Alamer, A. Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane. Axioms 2024, 13, 684. https://doi.org/10.3390/axioms13100684
Alohali H, Breaz V-D, Alsalami OM, Cotirla L-I, Alamer A. Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane. Axioms. 2024; 13(10):684. https://doi.org/10.3390/axioms13100684
Chicago/Turabian StyleAlohali, Hanan, Valer-Daniel Breaz, Omar Mutab Alsalami, Luminita-Ioana Cotirla, and Ahmed Alamer. 2024. "Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane" Axioms 13, no. 10: 684. https://doi.org/10.3390/axioms13100684
APA StyleAlohali, H., Breaz, V. -D., Alsalami, O. M., Cotirla, L. -I., & Alamer, A. (2024). Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane. Axioms, 13(10), 684. https://doi.org/10.3390/axioms13100684