Next Article in Journal
Crossed Modules and Non-Abelian Extensions of Differential Leibniz Conformal Algebras
Next Article in Special Issue
Eccentric p-Summing Lipschitz Operators and Integral Inequalities on Metric Spaces and Graphs
Previous Article in Journal
Starlikeness, Convexity, Close-to-Convexity, and Quasi-Convexity for Functions with Fixed Initial Coefficients
Previous Article in Special Issue
New Properties and Matrix Representations on Higher-Order Generalized Fibonacci Quaternions with q-Integer Components
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane

by
Hanan Alohali
1,
Valer-Daniel Breaz
2,
Omar Mutab Alsalami
3,*,
Luminita-Ioana Cotirla
4 and
Ahmed Alamer
5
1
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2
Department of Computing, Mathematics and Electronics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
3
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
4
Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
5
Department of Mathematics, University of Tabuk, Tabuk 71491, Saudi Arabia
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(10), 684; https://doi.org/10.3390/axioms13100684
Submission received: 23 August 2024 / Revised: 24 September 2024 / Accepted: 30 September 2024 / Published: 2 October 2024
(This article belongs to the Special Issue Theory and Application of Integral Inequalities)

Abstract

:
Integral inequalities with generalized convexity play a vital role in both theoretical and applied mathematics. The theory of integral inequalities is one of the branches of mathematics that is now developing at the quickest rate due to its wide range of applications. We define a new Hermite–Hadamard inequality for the novel class of coordinated ƛ-pre-invex fuzzy number-valued mappings (C-ƛ-pre-invex F N V Ms) and examine the idea of C-ƛ-pre-invex F N V Ms in this paper. Furthermore, using C-ƛ-pre-invex F N V Ms, we construct several new integral inequalities for fuzzy double Riemann integrals. Several well-known results, as well as recently discovered results, are included in these findings as special circumstances. We think that the findings in this work are new and will help to stimulate more research in this area in the future. Additionally, unique choices lead to new outcomes.

1. Introduction

Convexity is a key component of mathematical sciences and is useful in many domains, including optimization theory, economics, engineering, variational inequalities, management science, and Riemannian manifolds. Complex issues are simplified by convex sets and functions, which allow for effective computing solutions. Convex analysis-derived notions continue to be useful in a wide range of scientific and engineering fields. A strong mathematical idea known as convexity can be utilized to provide a theoretical framework for the development of efficient algorithms in a range of fields, as well as to simplify challenging mathematical issues. Convexity-derived integral inequalities provide a comprehensive understanding of the behavior of complex systems. Mathematical rigor is provided by these inequalities. They are essential tools for engineers and physicists because of their capacity to simulate, understand, and predict a broad variety of natural processes. The identification of new applications and connections made possible by this field of study will probably contribute to our comprehension of the physical universe. In conclusion, Jensen’s research and subsequent developments in convex analysis have made it clearer how useful convex functions are for comprehending optimization issues. This provides helpful methods and theoretical foundations for figuring out the optimal solutions in a range of scenarios. Mathematical convexity continues to be an important area of study and application in many different fields.
Generalized convexity ideas are used in approximation theory and probability distributions to approximate non-convex functions with convex functions. This approximation is useful for a wide range of computational and numerical techniques. To summarize, the mathematical framework for establishing and analyzing integral inequalities is shared by the closely related fields of study of generalized convexity and integral inequalities. The applications of these concepts in many domains, including physics, functional analysis, and optimization, highlight the importance of understanding the relationship between generalized convexity and integral inequality in theoretical and practical contexts. There are many different kinds of inequality in the literature. Hermite–Hadamard inequality, sometimes known as double inequality, is the most important component in optimization issues. In this context, we take into consideration the well-known inequality for convex functions due to Hadamard and Hermite separately; refer to Ref. [1].
Theorem 1.
Let P : p , q R be a convex mapping, where R is a set of real number. Then, the following outcome holds:
P p + q 2 1 q p p q P ҩ d ҩ P q + P p 2 .
One can check the concavity of the mappings by replacing the symbol “ with in (1).
The continuous investigation into improved versions of the double inequality demonstrates the mathematical significance of this discovery and its broad applicability in other fields; refer to Refs. [2,3]. Invex functions are now significant extensions of convex functions in mathematical optimization and related fields. The first introduction of invex functions, which generalized classical convex mappings, was made by the authors in [4], who also went over some of their intriguing characteristics. A modification and generalization of conventional convex mappings, the modified forms of invex sets and pre-invex functions, were introduced by Ben and Mond together in [5]. One characteristic that sets this type of invexity apart is that the differentiable pre-invex mappings are invex, but not the other way around. For further research related to pre-invexity and its applications, see [6,7,8] and the references therein.
With interval-valued analysis, one may successfully handle errors and uncertainties in a variety of computational tasks. This method is especially helpful for applications that demand precise forecasts and dependable outcomes, since it represents numerical values as intervals, ensuring that results are based on uncertainties in input data. It provides a practical and cautious method of computing by portraying numerical values as intervals. Interval analysis has several applications in various domains, including mathematics, computer science, engineering, and natural science, thanks to Moore’s [9] contributions (see [10]). Mathematicians are inspired to extend integral inequalities to interval-valued mappings due to exact results in a range of areas. In the beginning, writers in [11] linked Jensen-type and Hadamard-type results in the setup of set-valued functions using h-convex mappings. Afzal et al. [12] created three well-known inequalities that provide insight into the characteristics and behavior of stochastic processes inside a probability space by fusing the ideas of set-valued analysis and h-convex mappings. The concept of pre-invex functions was utilized by the authors in [13] to produce double inequality for set-valued mappings. The concept of pre-invex functions on coordinates is used by the authors in [14] to produce a number of double inequality conclusions on the rectangular plane. Sharma et al. [15] used fractional integral operators to build various novel product forms of the double inequality by utilizing the concept of (h1, h2)-pre-invex functions in the creation of set-valued mappings. In the setting of set-valued mappings, Zhou et al. [16] created an improved version of the double inequalities by utilizing pre-invex exponential type functions via fractional integrals. Up-down pre-invex mappings in a fuzzy setup were employed by Khan et al. [17] to obtain Fejér- and Hermite-type results. Noor et al. [18] produced several Hermite–Hadamard-type theorems linked to special functions using power mean integral inequalities, utilizing the idea of (h1, h2)-pre-invex mappings. Sun et al. [19] developed a number of novel double inequalities for h-pre-invex functions with applications by utilizing local fractional integrals. Using the idea of (s,m,φ)-type functions, the writers of [20] created a number of innovative forms of double inequalities for generalized pre-invex mappings that had some intriguing characteristics. Based on Godunova–Levin pre-invex mappings, Ali et al. [21] created several novel variations of Hermite-Hadamard-type findings using partial-order relations. Various novel Hermite–Hadamard- and Fejér-type findings were developed by Tariq et al. [22] by merging fractional operators and generalized pre-invex mappings. Sitho et al. [23] proved mid-point and trapezoidal inequality for differentiable pre-invex functions using the concept of quantum integrals. Applications of Trapezium-type inequalities for h-pre-invex functions to specific means were studied by Latif et al. [24]. The use by Delavar et al [25] of fractional integrals resulted in new limits for the mid-point type and Hermite–Hadamard’s trapezoid inequality. Further details on these findings and some other fascinating recent advances can be found in the references [26,27,28,29,30,31,32].
Additionally, we describe various applications for random variables within the context of error limits that also generalize other conclusions. This is the first time in the literature that we have established error bounds for quadrature-type formulas using this class of generalized fuzzy convexity. Since we cannot compare two intervals, the majority of the research is based on fuzzy partial-order or pseudo-order relationships, which show serious problems in several of the inequality results. The benefit of this order relationship is that intervals can be easily compared. More significantly, though, the interval difference’s endpoints are substantially closer together, allowing for a more accurate outcome. In 2023, different authors used distinct classes of convexities to derive different solutions utilizing Bhunias–Samanata-order relation; see [33,34,35].
Since the fuzzy set notion was introduced [36], fuzzy set theory has grown to be an effective tool for processing ambiguous or subjective data in mathematical models and for modeling uncertainty. The primary research areas have focused on a variety of applications in pressing issues, such as population dynamics [37,38], medicine [39,40,41], renewable and sustainable energy [42,43,44,45,46], engineering issues [47], and image processing [48,49]. In the same vein, fuzzy mathematical analysis is a crucial subject from both a theoretical and practical application standpoint [50,51]. For further study related to basic operations, Aumann’s integrations, and fractional integrals, where integrable mappings comprise interval-valued and fuzzy-number-valued mappings, see [52,53,54,55,56,57,58] and the references therein. Moreover, Khan et al. [59,60,61,62], and Matloka [63] presented the new versions of integral inequalities for fuzzy-number-valued mappings, real-valued mappings, and interval-value mappings with the help of coordinated convexity. Recently, Khan et al. [64] gave the fractional versions of inequalities via coordinated convexity and non-convexity, where integrable functions are fuzzy-number-valued mappings. For more information, see [65] and the reference therein.
This work is innovative and important because it uses various choices of bifunction “ ” to introduce a more generalized class of pre-invex functions called coordinated ƛ -pre-invex F · N · V · M s, which unify diverse previously reported findings. A more generalized version of inequality is deduced with this class, since pre-invexity offers more good features than conventional convex maps, and convexity and pre-invexity are two independent concepts.
We are defining a new class of pre-invexity for the first time thanks to the literature on developed inequalities, and, in particular, these articles [13,14,63]. Using these ideas, we are developing a number of novel variants of the well-known double- and trapezoid-type inequalities and their relationship to Fejér ’s work. This essay is organized as follows: building on the preparatory work in Section 2, In Section 3, we introduce a new class of pre-invexity and discuss some of its fascinating aspects. The primary findings of this work are reported in Section 3, where we share modified Hermite–Hadamard–Fejér-type results, as well as establishing various versions of well-known double-type inequalities. Section 4 concludes with a review of some closing observations and recommendations for further research.

2. Preliminaries

In this section, we go over a few recent definitions and findings that might bolster the study’s main conclusions. Moreover, several concepts are utilized in articles without being clarified; refer to Refs. [50,52,53,54,55,56,57,58]. In the following results, to avoid confusion, we will not include the symbols ( R ) , ( I R ) , ( F R ) , ( I D ) , or ( F D ) before the integral sign. Moreover, the notions R I , R I + , F 0 and F 0 + and R I will be used for a set of fuzzy number, set of positive fuzzy number, set of intervals, and collection of positive intervals, respectively.
Definition 1
([52,54]). Given Ɋ ~ F 0 , the level sets or cut sets are given by
Ɋ ~ ɤ = ҩ R | Ɋ ~ ҩ > ɤ ,
  ɤ ( 0 , 1 ]  and by
Ɋ ~ 0 = ҩ R | Ɋ ~ ҩ > 0 .
These sets are known as ɤ -level sets or ɤ -cut sets of Ɋ ~ .
Proposition 1
([40]). Let Ɋ ~ , Ŋ ~ F 0 . Then, relation F is given on F 0 by Ɋ ~ F Ŋ ~ when and only when Ɋ ~ ɤ I Ŋ ~ ɤ , for every ɤ [ 0 , 1 ] , which are left- and right-order relations.
Proposition 2
([37]). Let Ɋ ~ , Ŋ ~ F 0 . Then, relation F is given on F 0 by Ɋ ~ F Ŋ ~ when and only when Ɋ ~ ɤ I Ŋ ~ ɤ for every ɤ [ 0 , 1 ] , which is the U D -order relation on F 0 .
Remember the approaching notions, which are given in the literature. If Ɋ ~ , Ŋ ~ F 0 and t R , then, for every ɤ 0 , 1 , the arithmetic operation addition , multiplication , and scaler multiplication are defined by
Ɋ ~ Ŋ ~ ɤ = Ɋ ~ ɤ + Ŋ ~ ɤ ,
Ɋ ~ Ŋ ~ ɤ = Ɋ ~ ɤ × Ŋ ~ ɤ ,
t Ɋ ~ ɤ = t Ɋ ~ ɤ .
The equations numbered from (4) to (6) directly influence these results.
Theorem 2
([55]). Let  P ~ : [ p , q ] R F 0 be an F · N · V · M , its I · V · M s are classified according to their ɤ -levels P ɤ : [ p , q ] R R I are given by P ɤ ҩ = P * ҩ , ɤ , P * ҩ , ɤ     ҩ [ p , q ] and   ɤ ( 0 , 1 ] . Then, P ~ is F A -integrable over [ p , q ] if and only if P * ҩ , ɤ and P * ҩ , ɤ are both A -integrable over [ p , q ] . Moreover, if P ~ is F A -integrable over p , q , then
F A p q P ~ ҩ d ҩ ɤ = A p q P * ҩ , ɤ d ҩ ,   A p q P * ҩ , ɤ d ҩ
= I A p q P ɤ ҩ d ҩ
  ɤ ( 0 , 1 ] .  For all ɤ 0 , 1 ,   F A p , q , ɤ denotes the collection of all F A -integrable  F · N · V · M s over  [ p , q ] .
Here, we will give some definitions of Aumann’s fractional integrals over a rectangle plane.
Definition 2
([57]). Let  P : , R I +  be I · V · M and P I R , . Subsequently, the interval integrals of P using the Riemann–Liouville approach are delineated as follows:
I + α P ʑ = 1 Γ α ʑ ʑ t α 1 P t d t ʑ > ,
I α P ʑ = 1 Γ α ʑ t ʑ α 1 P t d t ʑ < ,
where α > 0 and Γ is the gamma function.
In a recent study by Allahviranloo et al. [58], they proposed a fuzzy adaptation of fractional integral formulations, which can be expressed as follows:
Definition 3.
Let α > 0 and L , , F 0 be the collection of all Lebesgue measurable F · N · V · M s on [ , ] . Then, the fuzzy left and right Riemann–Liouville fractional integral of P ~ L , , F 0 with order α > 0 are defined by
I + α P ~ ʑ = 1 Γ ( α ) ʑ ʑ t α 1 P ~ t d t , ʑ > ,
and
I α P ~ ʑ = 1 Γ ( α ) ʑ t ʑ α 1 P ~ t d t , ʑ < ,
respectively, where Γ ʑ = 0 t ʑ 1 e t d t is the Euler gamma function.
The fuzzy fractional ʑ -based integrals, both left and right, in the Riemann–Liouville framework, which rely on endpoint functions, can be characterized as follows:
I + α P ~ ʑ ɤ = 1 Γ α ʑ ʑ t α 1 P ɤ t d t = 1 Γ ( α ) ʑ ʑ t α 1 P * t , ɤ , P * t , ɤ d t ,   ʑ > ,
where
I + α P * ʑ , ɤ = 1 Γ ( α ) ʑ ʑ t α 1 P * t , ɤ d t ,         ʑ > ,
and
I + α P * ʑ , ɤ = 1 Γ ( α ) ʑ ʑ t α 1 P * t , ɤ d t ,         ʑ > .
The fuzzy Riemann–Liouville fractional integral on the right side, symbolized as I α P ~ ʑ ɤ , can likewise be formulated by incorporating both left and right endpoint functions.
Theorem 3
([59]). Let ƛ : 0 , 1 R + and P ~ : p , p + 2 q , p F 0 + be a pre-invex F · N · V · M on p , p + 2 q , p , whose ɤ -cuts set up the sequence of I · V · M s P ɤ : p , p + 2 q , p R R I + are given by P ɤ ʑ = P * ʑ , ɤ ,   P * ʑ , ɤ for all ʑ p , p + 2 q , p and for all ɤ 0 , 1 . If P ~ L p , p + 2 q , p , F 0 , then
1 α ƛ 1 2 P ~ 2 p + 2 q , p 2 F Γ α 2 q , p α I p + α P ~ p + 2 q , p I p + 2 q , p α P ~ p F P ~ p P ~ q 0 1 t β 1 ƛ t + ƛ 1 t d t .
Interval and fuzzy integrals in the style of Aumann are described as follows for C - I · V · M   P ҩ , ʑ and C - F · N · V · M   P ~ ҩ , ʑ .
Theorem 4
([61]). Let P ~ : = , × p , q R 2 F 0 be an F · N · V · M on coordinates, whose ɤ -cuts set up the sequence of I · V · M s   P ɤ : R 2 R I are given by P ɤ ҩ , ʑ = P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ for all ҩ , ʑ = , × p , q and for all ɤ 0 , 1 . Then, P ~ is fuzzy double-integrable ( F D -integrable) over if and only if P * ҩ , ʑ , ɤ and P * ҩ , ʑ , ɤ both are D -integrable over . Moreover, if P ~ is F D -integrable over , then
F D p q P ~ ҩ , ʑ d ʑ d ҩ ɤ = D p q P * ҩ , ʑ , ɤ d ʑ d ҩ ,   D p q P * ҩ , ʑ , ɤ d ʑ d ҩ = I D p q P ɤ ҩ , ʑ d ʑ d ҩ ,
for all  ɤ 0 , 1 .
The family of all F D -integrable functions of F · N · V · M s over coordinates and D -integrable functions over coordinates are denoted by F O and O , ɤ , for all ɤ 0 , 1 .
The primary specification for the fuzzy Riemann–Liouville fractional integral concerning the coordinates of the function P ~ ҩ , ʑ is presented as follows.
Definition 4
([60]). Let P ~ : F 0 and P ~ F O . The double fuzzy interval Riemann–Liouville-type integrals I + , p + α , β ,   I + , q α , β , I , p + α , β , I , q α , β of P ~ order α , β > 0 are defined by
I + , p + α , β P ~ ҩ , ʑ = 1 Γ α Γ β ҩ p ʑ ҩ t α 1 ʑ s β 1 P ~ t , s d s d t ,     ҩ > , ʑ > p ,
I + , q α , β P ~ ҩ , ʑ = 1 Γ α Γ β ҩ ʑ q ҩ t α 1 s ʑ β 1 P ~ t , s d s d t ,     ҩ > , ʑ < q ,
I , p + α , β P ~ ҩ , ʑ = 1 Γ α Γ β ҩ p ʑ t ҩ α 1 ʑ s β 1 P ~ t , s d s d t ,     ҩ < , ʑ > p ,
I , q α ,   β P ~ ҩ , ʑ = 1 Γ α Γ β ҩ ʑ q t ҩ α 1 s ʑ β 1 P ~ t , s d s d t ,     ( ҩ < , ʑ < q )
Presented below is the recently formulated notion of C - ƛ -pre-invexity across fuzzy number space within the codomain through the fuzzy relation denoted by the following.
Definition 5.
The F · N · V · M   P ~ : F 0 is referred to as C - ƛ -pre-invex F · N · V · M on an invex set if
P ~ + 1 t 1 , , p + 1 ԟ 2 q , p F ƛ t ƛ ԟ P ~ , p ƛ t ƛ 1 ԟ P ~ , q ƛ 1 t ƛ ԟ P ~ , p ƛ 1 t ƛ 1 ԟ P ~ , q ,
for all ,   ,   p , q ,   and t , ԟ 0 , 1 , where P ~ ҩ F 0 ~ . If inequality (22) is reversed, then P ~ is referred to as coordinate ƛ -pre-concave F · N · V · M on .
Lemma 1.
Let P ~ : F 0 be a C - F · N · V · M on . Then, P ~ is C - ƛ -pre-invex F · N · V · M on if and only if there exist two C - ƛ -pre-invex F · N · V · M s P ~ ҩ : p , q F 0 , P ~ ҩ w = P ~ ҩ , w and P ~ ʑ : , F 0 , P ~ ʑ z = P ~ z , ʑ .
Theorem 5.
Let P ~ : F 0 be an F · N · V · M on . Subsequently, derived from ɤ-levels, we acquire the set of I · V · M s   P ɤ : R I + R I , which are expressed as
P ɤ ҩ , ʑ = P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ ,
for all  ҩ , ʑ  and for all  ɤ 0 , 1 . Then,  P ~  is  C - ƛ -pre-invex  F · N · V · M  on  ,  if and only if, for all  ɤ 0 , 1 ,   P * ҩ , ʑ , ɤ  and  P * ҩ , ʑ , ɤ  both are  C - ƛ -pre-invex.
Proof. 
Assume that for each ɤ 0 , 1 ,   P * x , ɤ and P * x , ɤ are C - ƛ -pre-invex on . Then, from Equation (22), for all , ,   p , q ,   t and ԟ 0 , 1 , we have
P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ ƛ t ƛ ԟ P * , p , ɤ + ƛ t ƛ 1 ԟ P * , q , ɤ + ƛ ԟ ƛ 1 t P * , p , ɤ + ƛ 1 t ƛ 1 ԟ P * , q , ɤ ,
and
P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ ƛ t ƛ ԟ P * , p , ɤ + ƛ t ƛ 1 ԟ P * , q , ɤ + ƛ ԟ ƛ 1 t P * , p , ɤ + ƛ 1 t ƛ 1 ԟ P * , q , ɤ ,
Then, by Equations (4), (6), and (23), we obtain
P ɤ + 1 t 1 , , p + 1 ԟ 2 q , p
= P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ ,   P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ
I ƛ t ƛ ԟ P * , p , ɤ ,   P * , p , ɤ + ƛ t ƛ 1 ԟ P * , q , ɤ ,   P       * , q , ɤ
+ ƛ ԟ ƛ 1 t P * , p , ɤ ,   P * , p , ɤ + ƛ 1 t ƛ 1 ԟ P * , q , ɤ ,   P * , q , ɤ
That is,
P ~ + 1 t 1 , , p + 1 ԟ 2 q , p
F ƛ t ƛ ԟ P ~ , p ƛ t ƛ 1 ԟ P ~ , q ƛ 1 t ƛ 1 ԟ P ~ , p ƛ 1 t ƛ 1 ԟ P ~ , q ,
hence, P ~ is C - ƛ -pre-invex F · N · V · M on .
Conversely, let P ~ be C - ƛ -pre-invex F · N · V · M on . Then, for all , ,   p , q , t and ԟ 0 , 1 , we have
P ~ + 1 t 1 , , p + 1 ԟ 2 q , p
F ƛ t ƛ ԟ P ~ , p ƛ t ƛ 1 ԟ P ~ , q ƛ 1 t ƛ ԟ P ~ , p ƛ 1 t ƛ 1 ԟ P ~ , q
Therefore, again from Equation (23), for each ɤ 0 , 1 , we have
P ɤ + 1 t 1 , , p + 1 ԟ 2 q , p
= P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ ,   P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ
Again, using Equations (4) and (6), we obtain
ƛ t ƛ ԟ P ɤ , p + ƛ t ƛ 1 ԟ P ɤ , q + ƛ 1 t ƛ ԟ P ɤ , p + ƛ 1 t ƛ 1 ԟ P ɤ , q = ƛ t ƛ ԟ P * , p , ɤ ,   P * , p , ɤ + ƛ t ƛ 1 ԟ P * , q , ɤ ,   P * , q , ɤ + ƛ ԟ ƛ 1 t P * , p , ɤ ,   P * , p , ɤ + ƛ 1 t ƛ 1 ԟ P * , q , ɤ ,   P * , q , ɤ ,
for all x , ω and t 0 , 1 . Then, by the C - ƛ -pre-invexity of P ~ , we have for all x , ω and t 0 , 1 the case that
P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ
ƛ t ƛ ԟ P * , p + ƛ t ƛ 1 ԟ P * , q + ƛ 1 t ƛ ԟ P * , p + ƛ 1 t ƛ 1 ԟ P * , q ,
and
P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ
ƛ t ƛ ԟ P * , p + ƛ t ƛ 1 ԟ P * , q + ƛ 1 t ƛ ԟ P * , p + ƛ 1 t ƛ 1 ԟ P * , q ,
for each ɤ 0 , 1 . Hence, the result follows. □
Example 1.
We consider the F · N · V · M   P ~ : 0 , 1 × 0 , 1 F 0 defined by
P ҩ , ʑ σ = σ ҩ ʑ 5 ҩ ʑ ,                               σ ҩ ʑ ,   5 6 + e ҩ 6 + e ʑ σ 6 + e ҩ 6 + e ʑ 5 ,         σ 5 , 6 + e ҩ 6 + e ʑ 0             ,                               o t h e r w i s e ,
Then, for each ɤ 0 , 1 , we have P ɤ ҩ = 1 ɤ ҩ ʑ + 5 ɤ , 1 ɤ 6 + e ҩ 6 + e ʑ + 5 ɤ . Since endpoint functions P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ are C - ƛ -pre-invex functions for each ɤ 0 , 1 , P ~ ҩ , ʑ is a C - ƛ -pre-invex F · N · V · M .
Upon examination of Lemma 1 and Example 1, it becomes apparent that every ƛ -pre-invex F · N · V · M satisfies C - ƛ -pre-invex F · N · V · M conditions, utilizing 1 ҩ , ʑ = ʑ ҩ and 2 ҩ , ʑ = ʑ ҩ . However, the reverse assertion does not hold.
Remark 1.
When setting P * ҩ , ʑ , ɤ = P * ҩ , ʑ , ɤ with ɤ = 1 , P is deemed a classical C - ƛ -pre-invex function if it satisfies the specified inequality outlined here:
P + 1 t 1 , , p + 1 ԟ 2 q , p
ƛ t ƛ ԟ P * , p + ƛ t ƛ 1 ԟ P * , q + ƛ ԟ ƛ 1 t P * , p + ƛ 1 t ƛ 1 ԟ P * , q .
We define ƛ t = t ,   ƛ ԟ = ԟ , along with P * ҩ , ʑ , ɤ = P * ҩ , ʑ , ɤ with ɤ = 1 , leading to the classification of P as a classical C -pre-invex function, provided that P satisfies the following inequality:
P + 1 t 1 , , p + 1 ԟ 2 q , p
t ԟ P , p + t 1 ԟ P , q + 1 t ԟ P , p + 1 t 1 ԟ P , q
By setting ƛ t = t ,   ƛ ԟ = ԟ and P * ҩ , ʑ , ɤ P * ҩ , ʑ , ɤ with ɤ = 1 , and P * ҩ , ʑ , ɤ is an affine function and P * ҩ , ʑ , ɤ is a pre-concave function. If the stated inequality is true here, see [62]:
P + 1 t 1 , , p + 1 ԟ 2 q , p
t ԟ P , p + t 1 ԟ P , q + 1 t ԟ P , p + 1 t 1 ԟ P , q
Definition 6.
Let P ~ : F 0 be an F · N · V · M on , given by
P ɤ ҩ , ʑ = P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ ,
for all  ҩ , ʑ  and for all  ɤ 0 , 1 . If  P * ҩ , ʑ , ɤ  and  P * ҩ , ʑ , ɤ  are  C - ƛ -pre-invex (pre-concave) and affine functions on  , for all  ɤ 0 , 1 ,  respectively, then  P ~  is a  C -left- ƛ -pre-invex (pre-concave)  F · N · M  on  .
Definition 7.
Let P ~ : F 0 be an F · N · V · M on , defined by
P ɤ ҩ , ʑ = P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ ,  
for all  ҩ , ʑ  and for all  ɤ 0 , 1 . If  P * ҩ , ʑ , ɤ  and  P * ҩ , ʑ , ɤ  are  C - ƛ -affine and  ƛ -pre-invex (pre-concave) functions on  , respectively, then  P ~  is a  C -right- ƛ -pre-invex (pre-concave)  F · N · V · M  on  .
Theorem 6.
Let be a coordinated invex set, and let P ~ : F 0 be an F · N · V · M . Subsequently, derived from ɤ-levels, we acquire the set of I · V · M s   P ɤ : R I + R I , which are expressed as
P ɤ ҩ , ʑ = P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ ,  
for all  ҩ , ʑ  and for all  ɤ 0 , 1 . Then,  P ~  is  C - ƛ -pre-concave  F · N · V · M  on  ,  if and only if, for all  ɤ 0 , 1 ,   P * ҩ , ʑ , ɤ  and  P * ҩ , ʑ , ɤ  are  C - ƛ -pre-concave and  ƛ -pre-invex functions, respectively.
Proof. 
The proof for Theorem 6 follows a methodology akin to that of Theorem 5. □
Example 2.
We consider the F · N · V · M s P ~ : 0 , 1 × 0 , 1 F 0 defined by
P ~ ҩ , ʑ σ = σ 6 e ҩ 6 e ʑ 6 e ҩ 6 e ʑ 25 ,   σ 6 e ҩ 6 e ʑ ,   25 35 ҩ ʑ σ 35 ҩ ʑ 25 ,                 σ 25 ,             35 ҩ ʑ 0 ,                       o t h e r w i s e .
Then, for each ɤ 0 , 1 , we have P ɤ ҩ , ʑ = 1 ɤ 6 e ҩ 6 e ʑ + 25 ɤ , 35 1 ɤ ҩ ʑ + 25 ɤ . Since endpoint functions P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ are coordinate ƛ -pre-concave and ƛ -affine functions with ƛ t = t , ƛ ԟ = ԟ and by means of 1 ҩ , ʑ = ʑ ҩ and 2 ҩ , ʑ = ʑ ҩ , for each ɤ 0 , 1 , P ~ ҩ , ʑ is C - ƛ -pre-concave F · N · V · M .

3. Main Results

Below, we present the primary findings for C -integral inequalities applicable to the Hermite–Hadamard type, employing fuzzy fractional operators within C - ƛ -pre-invex F · N · V · M s.
Theorem 7.
Let P ~ : = , + 1 , × p , p + 2 q , p F 0 + be a coordinate ƛ -pre-invex F · N · V · M on , where ƛ : 0 , 1 R + . Subsequently, derived fromɤ-levels, we acquire the set of I · V · M s   P ɤ : R I + R I , which are expressed as P ɤ ҩ , ʑ = P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ for all ҩ , ʑ and for all ɤ 0 , 1 . If P ~ F O , then the following inequalities hold:
1 ƛ 2 1 2 P ~ 2 + 1 , 2 ,   2 p + 2 q , p 2
F Γ α + 1 2 ƛ 1 2 1 , α I + α P ~ + 1 , , 2 p + 2 q , p 2 I + 1 , α P ~ , 2 p + 2 q , p 2 Γ β + 1 2 ƛ 1 2 2 q , p β I p + β P ~ 2 + 1 , 2 , p + 2 q , p I p + 2 q , p β P ~ 2 + 1 , 2 , p
F Γ α + 1 Γ β + 1 1 , α 2 q , p β [ I + , p + α ,   β P ~ + 1 , , p + 2 q , p I + , p + 2 q , p α ,   β P ~ + 1 , , p I + 1 , , p + α ,   β P ~ , p + 2 q , p I + 1 , , p + 2 q , p α ,   β P ~ , p ]
F β Γ α + 1 1 , α [ I + α P ~ + 1 , , p I + α P ~ + 1 , , p + 2 q , p I + 1 , α P ~ , p I + 1 , α P ~ , p + 2 q , p ] × 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ
α Γ β + 1 2 q , p β [ I p +   β P ~ , p + 2 q , p I p + 2 q , p β P ~ + 1 , , p I p + β P ~ + 1 , , p + 2 q , p I p + 2 q , p β P ~ + 1 , , p ] × 0 1 t α 1 ƛ t + ƛ 1 t d t
F α β P ~ , p P ~ , p P ~ , q P ~ , q × 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ 0 1 t α 1 ƛ t + ƛ 1 t d t .
If P ~ ҩ , ʑ   C - ƛ -pre-concave F · N · V · M , then,
1 ƛ 2 1 2 P ~ 2 + 1 , 2 ,   2 p + 2 q , p 2
F Γ α + 1 2 ƛ 1 2 1 , α I + α P ~ + 1 , , 2 p + 2 q , p 2 I + 1 , α P ~ , 2 p + 2 q , p 2 Γ β + 1 2 ƛ 1 2 2 q , p β I p + β P ~ 2 + 1 , 2 , p + 2 q , p I p + 2 q , p β P ~ 2 + 1 , 2 , p
F Γ α + 1 Γ β + 1 1 , α 2 q , p β [ I + , p + α ,   β P ~ + 1 , , p + 2 q , p I + , p + 2 q , p α ,   β P ~ + 1 , , p I + 1 , , p + α ,   β P ~ , p + 2 q , p I + 1 , , p + 2 q , p α ,   β P ~ , p ]
F β Γ α + 1 1 , α [ I + α P ~ + 1 , , p I + α P ~ + 1 , , p + 2 q , p I + 1 , α P ~ , p I + 1 , α P ~ , p + 2 q , p ] × 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ
α Γ β + 1 2 q , p β [ I p + β P ~ , p + 2 q , p I p + 2 q , p β P ~ + 1 , , p I p + β P ~ + 1 , , p + 2 q , p I p + 2 q , p β P ~ + 1 , , p ] × 0 1 t α 1 ƛ t + ƛ 1 t d t
F α β P ~ , p P ~ , p P ~ , q P ~ , q × 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ 0 1 t α 1 ƛ t + ƛ 1 t d t .
Proof. 
Let P ~ : , + 1 , × p , p + 2 q , p F 0 be a C - ƛ -pre-invex F · N · V · M . Then, by hypothesis, we have
1 ƛ 2 1 2 P ~ 2 + 1 , 2 , 2 p + 2 q , p 2 F P ~ + 1 t 1 , , p + 1 ԟ 2 q , p P ~ + t 1 , , p + ԟ 2 q , p .
By using Theorem 5, for every ɤ 0 , 1 , we have
1 ƛ 2 1 2 P * 2 + 1 , 2 , 2 p + 2 q , p 2 , ɤ                                                                                                       P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ + P * + t 1 , , p + ԟ 2 q , p , ɤ ,     1 ƛ 2 1 2 P * 2 + 1 , 2 , 2 p + 2 q , p 2 , ɤ                                                                                                         P * + 1 t 1 , , p + 1 ԟ 2 q , p , ɤ + P * + t 1 , , p + ԟ 2 q , p , ɤ .
By using Lemma 1, we have
1 ƛ 1 2 P * ҩ , 2 p + 2 q , p 2 , ɤ P * ҩ , p + 1 ԟ 2 q , p , ɤ + P * ҩ , p + ԟ 2 q , p , ɤ , 1 ƛ 1 2 P * ҩ , 2 p + 2 q , p 2 , ɤ P * ҩ , p + 1 ԟ 2 q , p , ɤ + P * ҩ , p + ԟ 2 q , p , ɤ ,
and
1 ƛ 1 2 P * 2 + 1 , 2 , ʑ , ɤ P * + 1 t 1 , ,   ʑ , ɤ + P * + t 1 , ,   ʑ , ɤ ,     1 ƛ 1 2 P * 2 + 1 , 2 , ʑ , ɤ P * + 1 t 1 , ,   ʑ , ɤ + P * + t 1 , ,   ʑ , ɤ .
From (32) and (33), we have
1 ƛ 1 2 P * ҩ , 2 p + 2 q , p 2 , ɤ , P * ҩ , 2 p + 2 q , p 2 , ɤ
I P * ҩ , p + 1 ԟ 2 q , p , ɤ , P * ҩ , p + 1 ԟ 2 q , p , ɤ
+ P * ҩ , p + ԟ 2 q , p , ɤ , P * ҩ , p + ԟ 2 q , p , ɤ ,
and
1 ƛ 1 2 P * 2 + 1 , 2 , ʑ , ɤ , P * 2 + 1 , 2 , ʑ , ɤ
I P * + 1 t 1 , , ʑ , ɤ , P * + 1 t 1 , , ʑ , ɤ
+ P * + 1 t 1 , , ʑ , ɤ , P * + 1 t 1 , + 1 t 1 , , ʑ , ɤ ,
It follows that
1 ƛ 1 2 P ɤ ҩ , 2 p + 2 q , p 2 I P ɤ ҩ , p + 1 ԟ 2 q , p + P ɤ ҩ , p + ԟ 2 q , p ,
and
1 ƛ 1 2 P ɤ 2 + 1 , 2 , ʑ I P ɤ + 1 t 1 , , ʑ + P ɤ + 1 t 1 , , ʑ .
Since P ɤ ҩ , . and P ɤ . , ʑ , are both C - ƛ -pre-invex- I · V · M s, from inequality (16), for every ɤ 0 , 1 , for inequalities (34) and (35), we have
1 β ƛ 1 2 P ɤ ҩ 2 p + 2 q , p 2 I Γ β 2 q , p β I p + β P ɤ ҩ p + 2 q , p + I p + 2 q , p β P ɤ ҩ p I [ P ɤ ҩ p + P ɤ ҩ q ] 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ
and
1 α ƛ 1 2 P ɤ ʑ 2 + 1 , 2 I Γ α 1 , α I + α P ɤ ʑ + 1 , + I + 1 , α P ɤ ʑ I [ P ɤ ʑ + P ɤ ʑ ] 0 1 t α 1 ƛ t + ƛ 1 t d t
Since P ɤ ҩ w = P ɤ ҩ , w , (36) can be written as
1 β ƛ 1 2 P ɤ ҩ , 2 p + 2 q , p 2 I Γ β 2 q , p β I p + α P ɤ ҩ , p + 2 q , p + I p + 2 q , p α P ɤ ҩ , p I [ P ɤ ҩ , p + P ɤ ҩ , q ] 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ .
That is,
1 β ƛ 1 2 P ɤ ҩ , 2 p + 2 q , p 2 I 1 2 q , p β [ p p + 2 q , p p + 2 q , p ԟ β 1 P ɤ ҩ , ԟ d ԟ + p p + 2 q , p ԟ p β 1 P ɤ ҩ , ԟ d ԟ ]
I P ɤ ҩ , p + P ɤ ҩ , q 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ .
Multiplying double inequality (38) by + 1 , ҩ α 1 1 , α and integrating with respect to ҩ over , + 1 , , we have
1 β 1 , α ƛ 1 2 + 1 , P ɤ ҩ , 2 p + 2 q , p 2 + 1 , ҩ α 1 d ҩ
I 1 1 , α 2 q , p β + 1 , p p + 2 q , p + 1 , ҩ α 1 p + 2 q , p ԟ β 1 P ɤ ҩ , ԟ d ԟ d ҩ + + 1 , p p + 2 q , p + 1 , ҩ α 1 ԟ p β 1 P ɤ ҩ , ԟ d ԟ d ҩ
I 1 1 , α [ + 1 , + 1 , ҩ α 1 P ɤ ҩ , p d ҩ + + 1 , + 1 , ҩ α 1 P ɤ ҩ , q d ҩ ] 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ
Again, multiplying double inequality (38) by ҩ α 1 1 , α and integrating with respect to ҩ over , + 1 , , we have
1 β 1 , α ƛ 1 2 + 1 , P ɤ ҩ , 2 p + 2 q , p 2 ҩ α 1 d ҩ
I 1 1 , α 2 q , p β + 1 , p p + 2 q , p ҩ α 1 p + 2 q , p ԟ β 1 P ɤ ҩ , ԟ d ԟ d ҩ
+ 1 1 , α 2 q , p β + 1 , p p + 2 q , p ҩ α 1 ԟ p β 1 P ɤ ҩ , ԟ d ԟ d ҩ
I 1 1 , α [ + 1 , ҩ α 1 P ɤ ҩ , p d ҩ + + 1 , ҩ α 1 P ɤ ҩ , p + 2 q , p d ҩ ] 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ
From (39), we have
Γ α + 1 2 ƛ 1 2 1 , α I + α P ɤ + 1 , , 2 p + 2 q , p 2 ,
I Γ α + 1 Γ β + 1 1 , α 2 q , p β I + , p + α ,   β P ɤ + 1 , , p + 2 q , p + I + 1 , , p + α ,   β P ɤ + 1 , , p
I β Γ α + 1 1 , α I + α P ɤ + 1 , , p + I + α P ɤ + 1 , , p + 2 q , p 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ
From (40), we have
Γ α + 1 2 ƛ 1 2 1 , α I + 1 , α P ɤ , 2 p + 2 q , p 2
I Γ α + 1 Γ β + 1 1 , α 2 q , p β I + 1 , , p + α ,   β P ɤ , p + 2 q , p + I + 1 , , p + 2 q , p α ,   β P ɤ , p
I β Γ α + 1 1 , α I + 1 , α P ɤ , p + I + 1 , α P ɤ , p + 2 q , p 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ
This is because, derived from ɤ-levels, we acquire the set of I · V · M s   P ɤ : R I + R I , which are expressed as
Γ α + 1 2 ƛ 1 2 1 , α I + α P ~ + 1 , , 2 p + 2 q , p 2
F Γ α + 1 Γ β + 1 1 , α 2 q , p β I + , p + α ,   β P ~ + 1 , , p + 2 q , p I + 1 , , p + α ,   β P ~ + 1 , , p
F β Γ α + 1 1 , α I + α P ~ + 1 , , p I + α P ~ + 1 , , p + 2 q , p 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ .
and
Γ α + 1 2 ƛ 1 2 1 , α I + 1 , α P ~ , 2 p + 2 q , p 2
F β Γ α + 1 Γ β + 1 1 , α 2 q , p β I + 1 , , p + α ,   β P ~ , p + 2 q , p I + 1 , , p + 2 q , p α ,   β P ~ , p
F β Γ α + 1 1 , α I + 1 , α P ~ , p I + 1 , α P ~ , p + 2 q , p 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ .
Similarly, since P ~ ʑ z = P ~ z , ʑ then, from (37), (43) and (44), we have
Γ β + 1 2 ƛ 1 2 2 q , p β I p + β P ~ 2 + 1 , 2 , p + 2 q , p
F Γ α + 1 Γ β + 1 1 , α 2 q , p β I + , p + α ,   β P ~ + 1 , , p + 2 q , p I + 1 , , p + α ,   β P ~ , p + 2 q , p
F α Γ β + 1 2 q , p β I p + β P ~ , p + 2 q , p I p + β P ~ + 1 , , p + 2 q , p .
and
Γ β + 1 2 ƛ 1 2 2 q , p α I p + 2 q , p β P ~ 2 + 1 , 2 , p
F Γ α + 1 Γ β + 1 1 , α 2 q , p β I + , p + 2 q , p α ,   β P ~ + 1 , , p I + 1 , , p + 2 q , p α ,   β P ~ , p
F α Γ β + 1 2 q , p β I p + 2 q , p β P ~ , p I p + 2 q , p β P ~ + 1 , , p .
The second, third, and fourth inequalities of (30) will be the consequence of adding the inequalities (43)–(46).
The second, third, and fourth inequalities within Equation (30) arise from the incorporation of the inequalities (43)–(46).
Now, considering any ɤ 0 , 1 , we encounter the left segment of inequality (16).
1 ƛ 2 1 2 P ɤ 2 + 1 , 2 , 2 p + 2 q , p 2 I Γ β + 1 ƛ 1 2 2 q , p β [ I p + β P ɤ 2 + 1 , 2 , p + 2 q , p + I p + 2 q , p β P ɤ 2 + 1 , 2 , p ]
and
1 ƛ 2 1 2 P ɤ 2 + 1 , 2 , 2 p + 2 q , p 2 I Γ α + 1 ƛ 1 2 1 , α [ I + α P ɤ + 1 , , 2 p + 2 q , p 2 + I + 1 , α P ɤ , 2 p + 2 q , p 2 ]
The subsequent inequality emerges from the combination of the two inequalities (47) and (48):
1 ƛ 2 1 2 P ɤ 2 + 1 , 2 , 2 p + 2 q , p 2 I Γ α + 1 ƛ 1 2 1 , α [ I + α P ɤ + 1 , , 2 p + 2 q , p 2 + I + 1 , α P ɤ , 2 p + 2 q , p 2 ]
+ Γ β + 1 ƛ 1 2 2 q , p β I p + β P ɤ 2 + 1 , 2 , p + 2 q , p + I p + 2 q , p β P ɤ 2 + 1 , 2 , p
Likewise, as we acquire the collection of I · V · M s P ɤ : R I + for ɤ 0 , 1 , the inequality can be articulated in the following manner:
1 ƛ 2 1 2 P ~ 2 + 1 , 2 , 2 p + 2 q , p 2
F Γ α + 1 ƛ 1 2 1 , α I + α P ~ + 1 , , 2 p + 2 q , p 2 I + 1 , α P ~ , 2 p + 2 q , p 2 Γ β + 1 ƛ 1 2 2 q , p β [ I p + β P ~ 2 + 1 , 2 , p + 2 q , p I p + 2 q , p β P ~ 2 + 1 , 2 , p ] .
This is the primary inequality in Equation (30).
Now, considering any ɤ 0 , 1 , we observe the right section of inequality (16):
Γ β 2 q , p β I p + β P ɤ , p + 2 q , p + I p + 2 q , p β P ɤ , p I P ɤ , p + P ɤ , p + 2 q , p × 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ
Γ β 2 q , p β I p + β P ɤ + 1 , , p + 2 q , p + I p + 2 q , p β P ɤ + 1 , , p I P ɤ , p + P ɤ , q × 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ
Γ α 1 , α I + α P ɤ + 1 , , p + I + 1 , α P ɤ , p I P ɤ , p + P ɤ , p × 0 1 t α 1 ƛ t + ƛ 1 t d t
Γ α 1 , α I + α P ɤ + 1 , , p + 2 q , p + I + 1 , α P ɤ , p + 2 q , p I P ɤ , q + P ɤ , q × 0 1 t α 1 ƛ t + ƛ 1 t d t
Summing inequalities (50)–(53), and then multiplying the resultant with α β , we have
β Γ α + 1 1 , α [ I + α P ɤ + 1 , , p + I + 1 , α P ɤ , p + I + α P ɤ + 1 , , p + 2 q , p + I + 1 , α P ɤ , p + 2 q , p ]
+ α Γ β + 1 2 q , p β [ I p + β P ɤ , p + 2 q , p + I p + 2 q , p β P ɤ , p + I p + β P ɤ + 1 , , p + 2 q , p + I p + 2 q , p β P ɤ + 1 , , p ]
I P ɤ , p + P ɤ , q + P ɤ , p + P ɤ , q × 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ 0 1 t α 1 ƛ t + ƛ 1 t d t .
This is because, derived from ɤ-levels, we acquire the set of I · V · M s   P ɤ : R I + R I , which is expressed as
β Γ α + 1 1 , α [ I + α P ~ + 1 , , p I + 1 , α P ~ , p I + α P ~ + 1 , , p + 2 q , p I + 1 , α P ~ , p + 2 q , p ]
α Γ β + 1 2 q , p β [ I p + β P ~ , p + 2 q , p I p + 2 q , p β P ~ , p I p + β P ~ + 1 , , p + 2 q , p I p + 2 q , p β P ~ + 1 , , p ]
F P ~ , p P ~ , q P ~ , p P ~ , q × 0 1 ԟ β 1 ƛ ԟ + ƛ 1 ԟ d ԟ 0 1 t α 1 ƛ t + ƛ 1 t d t .
Here lies the ultimate inequality within (30), marking the establishment of the conclusion. □
Example 3.
We consider the F · N · V · M s P ~ : 0 ,   2 × 0 ,   2 F 0 , characterized by
P ҩ , ʑ σ = σ 2 ҩ 2 ʑ ,                       σ 0 ,   2 ҩ 2 ʑ 2 2 ҩ 2 ʑ σ 2 ҩ 2 ʑ ,   σ 2 ҩ 2 ʑ ,   2 2 ҩ 2 ʑ 0 ,                                             o t h e r w i s e ,
then, for each  ɤ 0 , 1 ,  we have  P ɤ ҩ , ʑ = ɤ 2 ҩ 2 ʑ , 2 ɤ 2 ҩ 2 ʑ . Consequently, the endpoint functions  P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ  are  C - ƛ -pre-invex functions for each  ɤ 0 , 1  with respect to  1 , = ,  and  2 q , p = q p . Hence,  P ~ ҩ , ʑ  is a  C - ƛ -pre-invex  F · N · V · M  with respect to  1 , = ,  and  2 q , p = q p .
P ɤ 2 + 1 , 2 ,   2 p + 2 q , p 2 = ɤ , 2 ɤ
Γ α + 1 4 1 , α I + α P ~ + 1 , , 2 p + 2 q , p 2 I + 1 , α P ~ , 2 p + 2 q , p 2 Γ β + 1 4 2 q , p β I p + β P ~ 2 + 1 , 2 , p + 2 q , p I q β P ~ 2 + 1 , 2 , p
= ɤ 2 2 4 2 8 , 2 ɤ 2 2 4 2 8
Γ α + 1 Γ β + 1 4 1 , α 2 q , p β [ I + , p + α ,   β P ɤ + 1 , , p + 2 q , p I + , p + 2 q , p α ,   β P ɤ + 1 , , p I + 1 , , p + α ,   β P ɤ , p + 2 q , p I + 1 , , p + 2 q , p α ,   β P ɤ , p ]
= ɤ 33 8 2 2 2 + 8 + 2 32 , 2 ɤ 33 8 2 2 2 + 8 + 2 32
Γ α + 1 8 1 , α [ I + α P ~ + 1 , , p I + α P ~ + 1 , , p + 2 q , p I + 1 , α P ~ , p I + 1 , α P ~ , p + 2 q , p ]
Γ β + 1 8 2 q , p β [ I p + β P ~ , p + 2 q , p I p + β P ~ + 1 , , p + 2 q , p I p + 2 q , p β P ~ , p I p + 2 q , p β P ~ + 1 , , p ]
= 34 2 + 2 4 24 8 2 ɤ , 34 2 + 2 4 24 8 2 2 ɤ
P ɤ p , + P ɤ σ , + P ɤ p , q + P ɤ σ , q 4 = ɤ 9 2 2 2 , 2 ɤ 9 2 2 2 .
That is,
ɤ , 2 ɤ I ɤ 2 2 4 2 8 , 2 ɤ 2 2 4 2 8
I ɤ 33 8 2 2 2 + 8 + 2 32 , 2 ɤ 33 8 2 2 2 + 8 + 2 32
I 34 2 + 2 4 24 8 2 ɤ , 34 2 + 2 4 24 8 2 2 ɤ
I ɤ 9 2 2 2 , 2 ɤ 9 2 2 2
Hence, Theorem 7 has been verified.
Remark 2.
Setting α = 1 and β = 1 , and ƛ t = t , ƛ ԟ = ԟ , from (30), as a result, there will be inequity; see [62]:
P ~ 2 + 1 , 2 ,   2 p + 2 q , p 2
F   1 2 [ 1 1 , + 1 , P ~ ҩ , 2 p + 2 q , p 2 d ҩ 1 2 q , p p p + 2 q , p P ~ 2 + 1 , 2 , ʑ d ʑ ]
F 1 1 , 2 q , p + 1 , p p + 2 q , p P ~ ҩ , ʑ d ʑ d ҩ
F   1 4 1 , + 1 , P ~ ҩ , p d ҩ + 1 , P ~ ҩ , p + 2 q , p d ҩ
  1 4 2 q , p p p + 2 q , p P ~ , ʑ d ʑ p p + 2 q , p P ~ + 1 , , ʑ d ʑ
F P ~ , p P ~ , p P ~ , q P ~ , q 4 .
If we set α = 1 and β = 1 , ƛ t = t ,   ƛ ԟ = ԟ and P ~ is C -left- ƛ -pre-invex, then from (30), as a result, there will be inequity:
P ~ 2 + 1 , 2 ,   2 p + 2 q , p 2
F   1 2 [ 1 1 , + 1 , P ~ ҩ , 2 p + 2 q , p 2 d ҩ 1 2 q , p p p + 2 q , p P ~ 2 + 1 , 2 , ʑ d ʑ ]
F 1 1 , 2 q , p + 1 , p p + 2 q , p P ~ ҩ , ʑ d ʑ d ҩ
F   1 4 1 , + 1 , P ~ ҩ , p d ҩ + 1 , P ~ ҩ , p + 2 q , p d ҩ
  1 4 2 q , p p p + 2 q , p P ~ , ʑ d ʑ p p + 2 q , p P ~ + 1 , , ʑ d ʑ
F P ~ , p P ~ , p P ~ , q P ~ , q 4 .
By setting ƛ t = t ,   ƛ ԟ = ԟ and P * ҩ , ʑ , ɤ P * ҩ , ʑ , ɤ with ɤ = 1 and P ~ being C -left- ƛ -pre-invex, following Equation (30), we manage to introduce the forthcoming inequality, as illustrated in [14]:
P 2 + 1 , 2 ,   2 p + 2 q , p 2
Γ α + 1 4 1 , α I + α P + 1 , , 2 p + 2 q , p 2 + I + 1 , α P , 2 p + 2 q , p 2 + Γ β + 1 4 2 q , p β I p + β P 2 + 1 , 2 , p + 2 q , p + I p + 2 q , p β P 2 + 1 , 2 , p
Γ α + 1 Γ β + 1 4 1 , α 2 q , p β [ I + , p + α ,   β P + 1 , , p + 2 q , p + I + , p + 2 q , p α ,   β P + 1 , , p + I + 1 , , p + α ,   β P , p + 2 q , p + I + 1 , , p + 2 q , p α ,   β P , p ]
Γ α + 1 8 1 , α [ I + α P + 1 , , p + I + α P + 1 , , p + 2 q , p + I + 1 , α P , p + I + 1 , α P , p + 2 q , p ]
+ Γ β + 1 8 2 q , p β [ I p + β P , p + 2 q , p + I p + 2 q , p β P , p + I p + β P + 1 , , p + 2 q , p + I p + 2 q , p β P + 1 , , p ]
P , p + P , p + P , q + P , q 4 .
If we set ƛ t = t ,   ƛ ԟ = ԟ and P * ҩ , ʑ , ɤ P * ҩ , ʑ , ɤ with ɤ = 1 and P ~ is C -left- ƛ -pre-invex, following Equation (30), we manage to introduce the forthcoming inequality, as illustrated in [14]:
P 2 + 1 , 2 ,   2 p + 2 q , p 2
  1 2 1 1 , + 1 , P ҩ , 2 p + 2 q , p 2 d ҩ + 1 2 q , p p p + 2 q , p P 2 + 1 , 2 , ʑ d ʑ
1 1 , 2 q , p + 1 , p p + 2 q , p P ҩ , ʑ d ʑ d ҩ
  1 4 1 , + 1 , P ҩ , p d ҩ + + 1 , P ҩ , p + 2 q , p d ҩ
+   1 4 2 q , p p p + 2 q , p P , ʑ d ʑ + p p + 2 q , p P + 1 , , ʑ d ʑ
P , p + P , p + P , q + P , q 4
By setting ƛ t = t ,   ƛ ԟ = ԟ and P * ҩ , ʑ , ɤ = P * ҩ , ʑ , ɤ with ɤ = 1 , following Equation (30), we manage to introduce the forthcoming inequality, as illustrated in [63]:
P 2 + 1 , 2 ,   2 p + 2 q , p 2
Γ α + 1 4 1 , α I + α   P + 1 , , 2 p + 2 q , p 2 + I + 1 , α P , 2 p + 2 q , p 2 + Γ β + 1 4 2 q , p β I p + β P 2 + 1 , 2 , p + 2 q , p + I p + 2 q , p β P 2 + 1 , 2 , p
Γ α + 1 Γ β + 1 4 1 , α 2 q , p β [ I + , p + α , β P + 1 , , p + 2 q , p + I + , p + 2 q , p α , β P + 1 , , p + I + 1 , , p + α , β P , p + 2 q , p + I + 1 , , p + 2 q , p α , β P , p ]
Γ α + 1 8 1 , α [ I + α P + 1 , , p I + α P + 1 , , p + 2 q , p + I + 1 , α P , p + I + 1 , α P , p + 2 q , p ]
+ Γ β + 1 8 2 q , p β [ I p +   β P , p + 2 q , p + I p + 2 q , p β P , p + I p + β P + 1 , , p + 2 q , p + I p + 2 q , p β P + 1 , , p ]
P , p + P , p + P , q + P , q 4 .
In the subsequent results, we anticipate discovering intriguing findings derived from the product of two C - ƛ -pre-invex F · N · V · M s. These inequalities are recognized as Pachpatte inequalities.
Theorem 8.
Let P ~ ,   G ~ : F 0 + be two C - ƛ -pre-invex F · N · V · M s on and let ƛ 1 , ƛ 2   : 0 , 1 R + . Subsequently, derived from ɤ-levels, we acquire the set of I · V · M s   P ɤ : R I + R I , which are expressed as P ɤ ҩ , ʑ = P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ and G ɤ ҩ , ʑ = G * ҩ , ʑ , ɤ ,   G * ҩ , ʑ , ɤ for all ҩ , ʑ and for all ɤ 0 , 1 . If P ~ G ~ F O , then the following inequalities hold:
Γ α Γ β [ 1 , ] α 2 q , p β [ I + , p + α ,   β P ~ + 1 , , p + 2 q , p G ~ + 1 , , p + 2 q , p I + , p + 2 q , p α ,   β P ~ + 1 , , p G ~ + 1 , , p ]
Γ α Γ β 1 , α 2 q , p β [ I + 1 , , p + α ,   β P ~ , p + 2 q , p G ~ , p + 2 q , p I + 1 , , p + 2 q , p α ,   β P ~ , p G ~ , p ]
F E ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ
Ѵ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ
Ѡ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ
Ϗ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ
If P ~ and G ~ are both C - ƛ -pre-concave F · N · V · M s on , then the aforementioned inequality can be formulated as follows:
Γ α Γ β 1 , α 2 q , p β [ I + , p + α ,   β P ~ + 1 , , p + 2 q , p G ~ + 1 , , p + 2 q , p I + , p + 2 q , p α ,   β P ~ + 1 , , p G ~ + 1 , , p ] Γ α Γ β 1 , α 2 q , p β [ I + 1 , , p + α ,   β P ~ , p + 2 q , p G ~ , p + 2 q , p I + 1 , , p + 2 q , p α ,   β P ~ , p G ~ , p ] F E ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ Ѵ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ Ѡ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ Ϗ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ
where
E ~ , , p , q = P ~ , p G ~ , p P ~ , p G ~ , p P ~ , q G ~ , q P ~ , q G ~ , q ,
Ѵ ~ , , p , q = P ~ , p G ~ , p P ~ , p G ~ , p P ~ , q G ~ , q P ~ , q G ~ , q ,
Ѡ ~ , , p , q = P ~ , p G ~ , q P ~ , p G ~ , q P ~ , q G ~ , p P ~ , q G ~ , p ,
Ϗ ~ , , p , q = P ~ , p G ~ , q P ~ , p G ~ , q P ~ , q G ~ , p P ~ , q G ~ , p ,
and for each ɤ 0 , 1 ,   E ~ , , p , q , Ѵ ~ , , p , q , Ѡ ~ , , p , q and Ϗ ~ , , p , q are defined as follows:
E ɤ , , p , q = E * , , p , q , ɤ ,   E * , , p , q , ɤ ,
Ѵ ɤ , , p , q = Ѵ * , , p , q , ɤ ,   Ѵ * , , p , q , ɤ ,
Ѡ ɤ , , p , q = Ѡ * , , p , q , ɤ ,   Ѡ * , , p , q , ɤ ,
Ϗ ɤ , , p , q = Ϗ * , , p , q , ɤ ,   Ϗ * , , p , q , ɤ .
Proof. 
Let P ~ and G ~ be two C - ƛ 1 and ƛ 2 -pre-invex F · N · V · M s on , + 1 , × p , p + 2 q , p , respectively. Then,
P ~ + 1 t 1 , , p + 1 ԟ 2 q , p
F ƛ 1 t ƛ 1 ԟ P ~ , p ƛ 1 t ƛ 1 1 ԟ P ~ , q ƛ 1 1 t ƛ 1 ԟ P ~ , p ƛ 1 1 t ƛ 1 1 ԟ P ~ , q ,
P ~ + 1 t 1 , , p + ԟ 2 q , p
F ƛ 1 t ƛ 1 1 ԟ P ~ , p ƛ 1 t ƛ 1 ԟ P ~ , q ƛ 1 1 t ƛ 1 1 ԟ P ~ , p ƛ 1 1 t ƛ 1 ԟ P ~ , q ,
P ~ + t 1 , , p + 1 ԟ 2 q , p
F ƛ 1 1 t ƛ 1 ԟ P ~ , p ƛ 1 1 t ƛ 1 1 ԟ P ~ , q ƛ 1 t ƛ 1 ԟ P ~ , p ƛ 1 t ƛ 1 1 ԟ P ~ , q ,
P ~ + t 1 , , p + ԟ 2 q , p
F ƛ 1 1 t ƛ 1 1 ԟ P ~ , p ƛ 1 1 t ƛ 1 ԟ P ~ , q ƛ 1 t ƛ 1 1 ԟ P ~ , p ƛ 1 t ƛ 1 ԟ P ~ , q ,
and
G ~ + 1 t 1 , , p + 1 ԟ 2 q , p
F ƛ 2 t ƛ 2 ԟ G ~ , p ƛ 2 t ƛ 2 1 ԟ G ~ , q ƛ 2 1 t ƛ 2 ԟ G ~ , p ƛ 2 1 t ƛ 2 1 ԟ G ~ , q ,
G ~ + 1 t 1 , , p + ԟ 2 q , p
F ƛ 2 t ƛ 2 1 ԟ G ~ , p ƛ 2 t ƛ 2 ԟ G ~ , q ƛ 2 1 t ƛ 2 1 ԟ G ~ , p ƛ 2 1 t ƛ 2 ԟ G ~ , q ,
G ~ + t 1 , , p + 1 ԟ 2 q , p
F ƛ 2 1 t ƛ 2 ԟ G ~ , p ƛ 2 1 t ƛ 2 1 ԟ G ~ , q ƛ 2 t ƛ 2 ԟ G ~ , p ƛ 2 t ƛ 2 1 ԟ G ~ , q ,
G ~ + t 1 , , p + ԟ 2 q , p
F ƛ 2 1 t ƛ 2 1 ԟ G ~ , p ƛ 2 1 t ƛ 2 ԟ G ~ , q ƛ 2 t ƛ 2 1 ԟ G ~ , p ƛ 2 t ƛ 2 ԟ G ~ , q ,
Since P ~ and G ~ are both C - ƛ 1 and ƛ 2 -pre-invex F · N · V · M s on , + 1 , × p , p + 2 q , p , respectively, for any ɤ 0 , 1 , we have
P ɤ + 1 t 1 , , p + 1 ԟ 2 q , p × G ɤ + 1 t 1 , , p + 1 ԟ 2 q , p
+ P ɤ + 1 t 1 , , p + ԟ 2 q , p × G ɤ + 1 t 1 , , p + ԟ 2 q , p
+ P ɤ + t 1 , , p + 1 ԟ 2 q , p × G ɤ + t 1 , , p + 1 ԟ 2 q , p
+ P ɤ + t 1 , , p + ԟ 2 q , p × G ɤ + t 1 , , p + ԟ 2 q , p
I E ɤ , , p , q [ ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ]
+ Ѵ ɤ , , p , q [ ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ]
+ Ѡ ɤ , , p , q [ ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ ]
+ Ϗ ɤ , , p , q [ ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ ] .
Taking the multiplication of the above fuzzy inclusion with t α 1 ԟ β 1 and then taking the double integration of the resultant over 0 , 1 × 0 , 1 with respect to ( t , ԟ ), it is the case that
0 1 0 1 t α 1 ԟ β 1 P ɤ + 1 t 1 , , p + 1 ԟ 2 q , p × G ɤ + 1 t 1 , , p + 1 ԟ 2 q , p d t d ԟ . + 0 1 0 1 t α 1 ԟ β 1 P ɤ + 1 t 1 , , p + ԟ 2 q , p × G ɤ + 1 t 1 , , p + ԟ 2 q , p d t d ԟ + 0 1 0 1 t α 1 ԟ β 1 P ɤ + t 1 , , p + 1 ԟ 2 q , p × G ɤ + t 1 , , p + 1 ԟ 2 q , p d t d ԟ   + 0 1 0 1 t α 1 ԟ β 1 P ɤ + t 1 , , p + ԟ 2 q , p × G ɤ + t 1 , , p + ԟ 2 q , p d t d ԟ   I E ɤ , , p , q 0 1 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ   + Ѵ ɤ , , p , q 0 1 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ   + Ѡ ɤ , , p , q 0 1 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ   + Ϗ ɤ , , p , q 0 1 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 ( 1 t ) ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ
From the expression on the right side of (63), we obtain
  0 1 0 1 t α 1 ԟ β 1 P ɤ + 1 t 1 , , p + 1 ԟ 2 q , p × G ɤ + 1 t 1 , , p + 1 ԟ 2 q , p d t d ԟ + 0 1 0 1 t α 1 ԟ β 1 P ɤ + 1 t 1 , , p + ԟ 2 q , p × G ɤ + 1 t 1 , , p + ԟ 2 q , p d t d ԟ + 0 1 0 1 t α 1 ԟ β 1 P ɤ + t 1 , , p + 1 ԟ 2 q , p × G ɤ + t 1 , , p + 1 ԟ 2 q , p d t d ԟ   + 0 1 0 1 t α 1 ԟ β 1 P ɤ + t 1 , , p + ԟ 2 q , p × G ɤ + t 1 , , p + ԟ 2 q , p d t d ԟ           = Γ α Γ β 1 , α 2 q , p β [ I + , p + α ,   β P ɤ + 1 , , q × G ɤ + 1 , , q + I + , p + 2 q , p α ,   β P ɤ + 1 , , p × G ɤ ( + 1 , , p ) ] .
Combining (63) and (64), for each ɤ 0 , 1 , we have
  Γ α Γ β 1 , α 2 q , p β [ I + , p + α ,   β P ɤ + 1 , , p + 2 q , p × G ɤ + 1 , , p + 2 q , p + I + , p + 2 q , p α ,   β P ɤ ( + 1 , , p ) × G ɤ + 1 , , p ]   I E ɤ , , p , q 0 1 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ +     ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ   + Ѵ ɤ , , p , q 0 1 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ   + Ѡ ɤ , , p , q 0 1 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ   + Ϗ ɤ , , p , q 0 1 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 ( 1 t ) ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ .
Moreover, we have
Γ α Γ β 1 , α 2 q , p β [ I + , p + α ,   β P ~ + 1 , , p + 2 q , p G ~ + 1 , , p + 2 q , p I + , p + 2 q , p α ,   β P ~ ( + 1 , , p ) G ~ + 1 , , p ] Γ α Γ β 1 , α 2 q , p β I + 1 , , p + α ,   β P ~ , p + 2 q , p G ~ , p + 2 q , p I + 1 , , p + 2 q , p α ,   β P ~ , p G ~ , p   F E ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ   Ѵ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 ( 1 t ) ƛ 1 ԟ ƛ 2 ԟ + ƛ 1 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 ԟ ] d t d ԟ   Ѡ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 t ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ Ϗ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 1 ԟ ƛ 2 ԟ + ƛ 1 ( 1 t ) ƛ 2 t ƛ 1 ԟ ƛ 2 1 ԟ + ƛ 1 t ƛ 2 1 t ƛ 1 ԟ ƛ 2 1 ԟ ] d t d ԟ .
Hence, the required result. □
Remark 3.
Suppose we assume ƛ t = t ,   ƛ ԟ = ԟ , along with α = 1 and β = 1 . Consequently, based on (61), an inequality emerges, as described in [62]:
1 1 , 2 q , p + 1 , p p + 2 q , p P ~ ҩ , ʑ G ~ ҩ , ʑ d ʑ d ҩ
F 1 9 E ~ , , p , q 1 18 Ѵ ~ , , p , q Ѡ ~ , , p , q 1 36 Ϗ ~ , , p , q
If P ~ is C -left- ƛ -pre-invex with ƛ t = t ,   ƛ ԟ = ԟ and one assumes that α = 1 and β = 1 , then from (61), as a result, there will be inequity:
1 1 , 2 q , p + 1 , p p + 2 q , p P ~ ҩ , ʑ G ~ ҩ , ʑ d ʑ d ҩ
F 1 9 E ~ , , p , q 1 18 Ѵ ~ , , p , q Ѡ ~ , , p , q 1 36 Ϗ ~ , , p , q
If P ~ is C -left- ƛ -pre-invex with P * ҩ , ʑ , ɤ P * ҩ , ʑ , ɤ with ɤ = 1 and ƛ t = t ,   ƛ ԟ = ԟ then, following Equation (61), we manage to introduce the forthcoming inequality, as illustrated in [14]:
Γ α + 1 Γ β + 1 4 1 , α 2 q , p β I + , p + α , β P + 1 , , p + 2 q , p × G + 1 , , p + 2 q , p + I + , p + 2 q , p α , β P + 1 , , p × G + 1 , , p + Γ α + 1 Γ β + 1 4 1 , α 2 q , p β I + 1 , , p + α , β P , p + 2 q , p × G , p + 2 q , p + I + 1 , , p + 2 q , p α , β P , p × G , p 1 2 α α + 1 α + 2 1 2 β β + 1 β + 2 E , , p , q + α ( α + 1 ) ( α + 2 ) 1 2 β ( β + 1 ) ( β + 2 ) Ѵ , , p , q + 1 2 α ( α + 1 ) ( α + 2 ) β ( β + 1 ) ( β + 2 ) Ѡ , , p , q + β ( β + 1 ) ( β + 2 ) α ( α + 1 ) ( α + 2 ) Ϗ , , p , q .
If ƛ t = t ,   ƛ ԟ = ԟ and P * ҩ , ʑ , ɤ P * ҩ , ʑ , ɤ with ɤ = 1 , then following Equation (61), we manage to introduce the forthcoming inequality, as illustrated in [63]:
1 1 , 2 q , p + 1 , p p + 2 q , p P ҩ , ʑ × G ҩ , ʑ d ʑ d ҩ
I 1 9 E , , p , q + 1 18 Ѵ , , p , q + Ѡ , , p , q + 1 36 Ϗ , , p , q
If P * ҩ , ʑ , ɤ = P * ҩ , ʑ , ɤ and G * ҩ , ʑ , ɤ = G * ҩ , ʑ , ɤ with ɤ = 1 and ƛ t = t ,   ƛ ԟ = ԟ , then following Equation (61), we manage to introduce the forthcoming inequality, as illustrated in [63]:
Γ α + 1 Γ β + 1 4 1 , α 2 q , p β I + , p + α , β P + 1 , , p + 2 q , p × G + 1 , , p + 2 q , p + I + , p + 2 q , p α , β P + 1 , , p × G + 1 , , p + Γ α + 1 Γ β + 1 4 1 , α 2 q , p β I + 1 , , p + α , β P , p + 2 q , p × G , p + 2 q , p + I + 1 , , p + 2 q , p α , β P , p × G , p 1 2 α α + 1 α + 2 1 2 β β + 1 β + 2 E , , p , q + α ( α + 1 ) ( α + 2 ) 1 2 β ( β + 1 ) ( β + 2 ) Ѵ , , p , q + 1 2 α ( α + 1 ) ( α + 2 ) β ( β + 1 ) ( β + 2 ) Ѡ , , p , q + β ( β + 1 ) ( β + 2 ) α ( α + 1 ) ( α + 2 ) Ϗ , , p , q .
Theorem 9.
Let P ~ ,   G ~ : F 0 + be a C - ƛ -pre-invex F · N · V · M on and let ƛ : 0 , 1 R + . Subsequently, derived from ɤ-levels, we acquire the set of I · V · M s   P ɤ : R I + R I , which are expressed as P ɤ ҩ , ʑ = P * ҩ , ʑ , ɤ ,   P * ҩ , ʑ , ɤ and G ɤ ҩ , ʑ = G * ҩ , ʑ , ɤ ,   G * ҩ , ʑ , ɤ for all ҩ , ʑ and for all ɤ 0 , 1 . If P ~ G ~ F O , then the following inequalities hold:
  1 2 α β ƛ 1 2 1 2 ƛ 2 2 1 2 P ~ 2 + 1 , 2 ,   2 p + 2 q , p 2 G ~ 2 + 1 , 2 ,   2 p + 2 q , p 2 F Γ α Γ β 2 1 , α 2 q , p β I + , p + α ,   β P ~ + 1 , , p + 2 q , p G ~ + 1 , , p + 2 q , p I + , p + 2 q , p α ,   β P ~ + 1 , , p G ~ + 1 , , p Γ α Γ β 2 1 , α 2 q , p β I + 1 , , p + α ,   β P ~ , p + 2 q , p G ~ , p + 2 q , p I + 1 , , p + 2 q , p α ,   β P ~ , p G ~ , p   E ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 ( 1 ԟ ) ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ ] d t d ԟ   Ѵ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 ( 1 ԟ ) ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ ] d t d ԟ   Ѡ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 1 t ƛ 1 ( 1 ԟ ) ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ ] d t d ԟ Ϗ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 1 t ƛ 1 ( 1 ԟ ) ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ ] d t d ԟ .
If P ~ and G ~ are both coordinate ƛ -pre-concave F · N · V · M s on , then the inequality above can be expressed as follows:
  1 2 α β ƛ 1 2 1 2 ƛ 2 2 1 2 P ~ 2 + 1 , 2 ,   2 p + 2 q , p 2 G ~ 2 + 1 , 2 ,   2 p + 2 q , p 2 F Γ α Γ β 2 1 , α 2 q , p β [ I + , p + α ,   β P ~ + 1 , , p + 2 q , p G ~ + 1 , , p + 2 q , p I + , p + 2 q , p α ,   β P ~ ( + 1 , , p ) G ~ + 1 , , p ] Γ α Γ β 2 1 , α 2 q , p β [ I + 1 , , p + α ,   β P ~ , p + 2 q , p G ~ , p + 2 q , p I + 1 , , p + 2 q , p α ,   β P ~ , p G ~ , p ]   E ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 ( 1 ԟ ) ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ ] d t d ԟ   Ѵ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 ( 1 ԟ ) ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ ] d t d ԟ   Ѡ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 1 t ƛ 1 ( 1 ԟ ) ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ ] d t d ԟ Ϗ ~ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 1 t ƛ 1 ( 1 ԟ ) ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ ] d t d ԟ .
where E ~ , , p , q , Ѵ ~ , , p , q , Ѡ ~ , , p , q , and Ϗ ~ , , p , q are given in Theorem 8.
Proof. 
Since P ~ , G ~ : F 0 are two ƛ -pre-invex F · N · V · M s, from inequality (18) and for each ɤ 0 , 1 , we have
    P ɤ 2 + 1 , 2 , 2 p + 2 q , p 2 × G ɤ 2 + 1 , 2 , 2 p + 2 q , p 2   = P ɤ + 1 t 1 , 2 + + t 1 , 2 , p + 1 ԟ 2 q , p 2 + 2 p + 2 q , p 2 × G ɤ + 1 t 1 , 2 + + t 1 , 2 , p + 1 ԟ 2 q , p 2 + p + ԟ 2 q , p 2     I ƛ 1 2 1 2 ƛ 2 2 1 2 × P ɤ + 1 t 1 , , p + 1 ԟ 2 q , p + P ɤ + t 1 , , p + 1 ԟ 2 q , p + P ɤ + 1 t 1 , , p + ԟ 2 q , p + P ɤ + t 1 , , p + ԟ 2 q , p × G ɤ + 1 t 1 , , p + 1 ԟ 2 q , p + G ɤ + t 1 , , p + 1 ԟ 2 q , p + G ɤ + 1 t 1 , , p + ԟ 2 q , p + G ɤ + t 1 , , p + ԟ 2 q , p   I ƛ 1 2 1 2 ƛ 2 2 1 2 × P ɤ + 1 t 1 , , p + 1 ԟ 2 q , p × G ɤ + 1 t 1 , , p + 1 ԟ 2 q , p + P ɤ + t 1 , , p + 1 ԟ 2 q , p × G ɤ + t 1 , , p + 1 ԟ 2 q , p + P ɤ + 1 t 1 , , p + ԟ 2 q , p × G ɤ + 1 t 1 , , p + ԟ 2 q , p + P ɤ + t 1 , , p + ԟ 2 q , p × G ɤ + t 1 , , p + ԟ 2 q , p + ƛ 1 2 1 2 ƛ 2 2 1 2 × ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 1 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 1 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ E ɤ , , p , q     + ƛ 1 2 1 2 ƛ 2 2 1 2 × ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 1 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 1 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ Ѵ ɤ , , p , q   + ƛ 1 2 1 2 ƛ 2 2 1 2 × ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 1 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 1 1 t ƛ 1 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ Ѡ ɤ , , p , q   + ƛ 1 2 1 2 ƛ 2 2 1 2   × ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 1 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ Ϗ ɤ , , p , q .
Multiplying the above fuzzy inclusion with t α 1 ԟ β 1 and then taking the double integration of the resultant over 0 , 1 × 0 , 1 with respect to ( t , ԟ ), we have
  0 1 0 1 t α 1 ԟ β 1 P ɤ 2 + 1 , 2 , 2 p + 2 q , p 2 × G ɤ 2 + 1 , 2 , 2 p + 2 q , p 2 d t d ԟ I ƛ 1 2 1 2 ƛ 2 2 1 2 ×                   0 1 0 1 t α 1 ԟ β 1 P ɤ + 1 t 1 , , p + 1 ԟ 2 q , p × G ɤ + 1 t 1 , , p + 1 ԟ 2 q , p + P ɤ + t 1 , , p + 1 ԟ 2 q , p × G ɤ + t 1 , , p + 1 ԟ 2 q , p + P ɤ + 1 t 1 , , p + ԟ 2 q , p × G ɤ + 1 t 1 , , p + ԟ 2 q , p + P ɤ + t 1 , , p + ԟ 2 q , p × G ɤ + t 1 , , p + ԟ 2 q , p d t d ԟ   + ƛ 1 2 1 2 ƛ 2 2 1 2 E ɤ , , p , q × 0 1 0 1 t α 1 ԟ β 1 ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 1 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 1 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ d t d ԟ   + ƛ 1 2 1 2 ƛ 2 2 1 2 Ѵ ɤ , , p , q × 0 1 0 1 t α 1 ԟ β 1 ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 1 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 1 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ d t d ԟ   + ƛ 1 2 1 2 ƛ 2 2 1 2 Ѡ ɤ , , p , q × 0 1 0 1 t α 1 ԟ β 1 ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 1 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 1 1 t ƛ 1 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ d t d ԟ   + ƛ 1 2 1 2 ƛ 2 2 1 2 Ϗ ɤ , , p , q   × 0 1 0 1 t α 1 ԟ β 1 ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 1 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ d t d ԟ ,
which implies that
  1 α β P ɤ 2 + 1 , 2 ,   2 p + 2 q , p 2 × G ɤ 2 + 1 , 2 ,   2 p + 2 q , p 2 F Γ α Γ β ƛ 1 2 1 2 ƛ 2 2 1 2 1 , α 2 q , p β [ I + , p + α ,   β P ɤ + 1 , , p + 2 q , p × G ɤ + 1 , , p + 2 q , p + I + , p + 2 q , p α ,   β P ɤ ( + 1 , , p ) × G ɤ + 1 , , p ] + Γ α Γ β ƛ 1 2 1 2 ƛ 2 2 1 2 1 , α 2 q , p β I + 1 , , p + α ,   β P ɤ , q × G ɤ , q + I + 1 , , q α ,   β P ɤ , p × G ɤ , p + 2 ƛ 1 2 1 2 ƛ 2 2 1 2 E ɤ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ ] d t d ԟ + 2 ƛ 1 2 1 2 ƛ 2 2 1 2 Ѵ ɤ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ ] d t d ԟ   + 2 ƛ 1 2 1 2 ƛ 2 2 1 2 Ѡ ɤ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 t ƛ 2 1 ԟ + ƛ 2 1 t ƛ 2 ԟ + ƛ 2 1 t ƛ 2 1 ԟ ] d t d ԟ + 2 ƛ 1 2 1 2 ƛ 2 2 1 2 Ϗ ɤ , , p , q 0 1 t α 1 ԟ β 1 [ ƛ 1 t ƛ 1 ԟ ƛ 2 1 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 1 t ƛ 1 1 ԟ ƛ 2 1 t ƛ 2 1 ԟ + ƛ 2 t ƛ 2 ԟ + ƛ 2 t ƛ 2 1 ԟ ] d t d ԟ ,
as ɤ 0 , 1 , following simplification, we arrive at the desired conclusion. □
Remark 4.
If one assumes that ƛ t = t ,   ƛ ԟ = ԟ and α = 1 and β = 1 , then from (70), as a result, there will be inequity; see [62]:
4 P ~ 2 + 1 , 2 , 2 p + 2 q , p 2 G ~ 2 + 1 , 2 , 2 p + 2 q , p 2
F 1 1 , 2 q , p + 1 , p p + 2 q , p P ~ ҩ , ʑ G ~ ҩ , ʑ d ʑ d ҩ 5 36 E ~ , , p , q
7 36 Ѵ ~ , , p , q Ѡ ~ , , p , q 2 9 Ϗ ~ , , p , q .
If P ~ is C -left- ƛ -pre-invex with ƛ t = t ,   ƛ ԟ = ԟ and one assumes that α = 1 and β = 1 , then from (70), as a result, there will be inequity:
4 P ~ 2 + 1 , 2 , 2 p + 2 q , p 2 G ~ 2 + 1 , 2 , 2 p + 2 q , p 2
F 1 1 , 2 q , p + 1 , p p + 2 q , p P ~ ҩ , ʑ G ~ ҩ , ʑ d ʑ d ҩ 5 36 E ~ , , p , q
7 36 Ѵ ~ , , p , q Ѡ ~ , , p , q 2 9 Ϗ ~ , , p , q .
If P * ҩ , ʑ , ɤ P * ҩ , ʑ , ɤ with ƛ t = t ,   ƛ ԟ = ԟ and ɤ = 1 , then following Equation (70), we manage to introduce the forthcoming inequality, as illustrated in [14]:
4 P 2 + 1 , 2 , 2 p + 2 q , p 2 × G 2 + 1 , 2 , 2 p + 2 q , p 2
1 1 , 2 q , p + 1 , p p + 2 q , p P ҩ , ʑ × G ҩ , ʑ d ʑ d ҩ + 5 36 E , , p , q
+ 7 36 Ѵ , , p , q + Ѡ , , p , q + 2 9 Ϗ , , p , q .
If P * ҩ , ʑ , ɤ P * ҩ , ʑ , ɤ with ɤ = 1 and ƛ t = t ,   ƛ ԟ = ԟ , then following Equation (70), we manage to introduce the forthcoming inequality, as illustrated in [14]:
4 P 2 + 1 , 2 ,   2 p + 2 q , p 2 × G 2 + 1 , 2 ,   2 p + 2 q , p 2 Γ α + 1 Γ β + 1 4 1 , α 2 q , p β I + , p + α , β P + 1 , , p + 2 q , p × G + 1 , , p + 2 q , p + I + , p + 2 q , p α , β P + 1 , , p × G + 1 , , p + I + 1 , , p + α , β P , p + 2 q , p × G , p + 2 q , p + I + 1 , , p + 2 q , p α , β P , p × G , p + α 2 α + 1 α + 2 + β β + 1 β + 2 1 2 α α + 1 α + 2 E , , p , q + 1 2 1 2 α α + 1 α + 2 + α ( α + 1 ) ( α + 2 ) β β + 1 β + 2 Ѵ , , p , q + 1 2 1 2 β β + 1 β + 2 + α ( α + 1 ) ( α + 2 ) β β + 1 β + 2 Ѡ , , p , q + 1 4 α ( α + 1 ) ( α + 2 ) β β + 1 β + 2 Ϗ , , p , q .
If P * ҩ , ʑ , ɤ = P * ҩ , ʑ , ɤ and G * ҩ , ʑ , ɤ = G * ҩ , ʑ , ɤ with ɤ = 1 and ƛ t = t ,   ƛ ԟ = ԟ , then following Equation (70), we manage to introduce the forthcoming inequality, as illustrated in [63]:
4 P 2 + 1 , 2 ,   2 p + 2 q , p 2 × G 2 + 1 , 2 ,   2 p + 2 q , p 2 Γ α + 1 Γ β + 1 4 1 , α 2 q , p β I + , p + α ,   β P + 1 , , p + 2 q , p × G + 1 , , p + 2 q , p + I + , p + 2 q , p α ,   β P + 1 , , p × G + 1 , , p + I + 1 , , p + α ,   β P , p + 2 q , p × G , p + 2 q , p + I + 1 , , p + 2 q , p α ,   β P , p × G , p + α 2 α + 1 α + 2 + β β + 1 β + 2 1 2 α α + 1 α + 2 E , , p , q + 1 2 1 2 α α + 1 α + 2 + α ( α + 1 ) ( α + 2 ) β β + 1 β + 2 Ѵ , , p , q + 1 2 1 2 β β + 1 β + 2 + α ( α + 1 ) ( α + 2 ) β β + 1 β + 2 Ѡ , , p , q + 1 4 α ( α + 1 ) ( α + 2 ) β β + 1 β + 2 Ϗ , , p , q .

4. Conclusions

This work studies various inequalities related to a novel class of pre-invexity via C - ƛ -pre-invex type F · N · V · M s via fuzzy-set-valued functions. First, under the full-order relation, we define the C - ƛ -pre-invex fuzzy mappings and investigate some of their induced features. Through the use of arbitrary non-negative functions and related bifunctions of Hermite, Hadamard, and Fejér-type inequalities, we construct unique forms and expand greatly on previously published results. Several unique instances of these inequities are also covered. Several numerical examples are provided to further show the correctness of the results. The notions and concepts presented in this paper can be used to investigate additional types of convex inequalities, with possible applications in problems such as optimization and differential equations with convex shapes attached.

Author Contributions

Conceptualization, H.A.; validation, L.-I.C. and A.A.; formal analysis, L.-I.C. and A.A.; investigation, H.A. and V.-D.B.; resources, H.A. and V.-D.B.; writing—original draft, H.A. and V.-D.B.; writing—review and editing, H.A., O.M.A. and A.A.; visualization, V.-D.B., O.M.A., and L.-I.C.; supervision, V.-D.B. and O.M.A.; project administration, V.-D.B., L.-I.C., and O.M.A. All authors have read and agreed to the published version of the manuscript.

Funding

The work is supported by King Saud University (Supporting Project number RSPD2024R860), Riyadh, Saudi Arabia).

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors would like to extend their sincere appreciation to Supporting Project number (RSPD2024R860) King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Hadamard, J. Essai sur L’etude des Fonctions, Donn ‘ees par leur d’ Eveloppement de Taylor; Gauthier-Villars: Paris, France, 1892. [Google Scholar]
  2. Bessenyei, M. The Hermite–Hadamard Inequality in Beckenbach’s Setting. J. Math. Anal. Appl. 2010, 364, 366–383. [Google Scholar] [CrossRef]
  3. Shi, X.L.; Cao, J.; Li, X.; Zhang, J.; Gong, H.; Liu, S. Polyetheretherketone fiber-supported polyethylene glycols for phase-transfer catalysis in its surface layer. Colloids Surf. A Physicochem. Eng. Asp. 2024, 694, 134160. [Google Scholar] [CrossRef]
  4. Hanson, M.A. On sufficiency of the Kun-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef]
  5. Weir, T.; Mond, B. Preinvex functions in multiobjective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef]
  6. Noor, M.A. Hermite–Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
  7. Liu, Z.; Xu, Z.; Zheng, X.; Zhao, Y.; Wang, J. 3D path planning in threat environment based on fuzzy logic. J. Intell. Fuzzy Syst. 2024, 1, 7021–7034. [Google Scholar] [CrossRef]
  8. Mohan, S.R.; Neogy, S.K. On invex set and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef]
  9. Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966; Volume 4, pp. 8–13. [Google Scholar]
  10. Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130. [Google Scholar]
  11. Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]
  12. Afzal, W.; Prosviryakov, E.Y.; El-Deeb, S.M.; Almalki, Y. Some New Estimates of Her mite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions. Symmetry 2023, 15, 831. [Google Scholar] [CrossRef]
  13. Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Her mite–Hadamard Type Inequalities for Interval-Valued Preinvex Functions via Fractional Integral Operators. Int. J. Comput. Intell. Syst. 2022, 15, 8. [Google Scholar] [CrossRef]
  14. Lai, K.K.; Mishra, S.K.; Bisht, J.; Hassan, M. Hermite–Hadamard Type Inclusions for Interval Valued Coordinated Preinvex Functions. Symmetry 2022, 14, 771. [Google Scholar] [CrossRef]
  15. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite–Hadamard-Type Inequalities for Interval-Valued Preinvex Functions via Riemann–Liouville Fractional Integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
  16. Zhou, H.; Saleem, M.S.; Nazeer, W.; Shah, A.F.; Zhou, H.; Saleem, M.S.; Nazeer, W.; Shah, A.F. Hermite-Hadamard Type Inequalities for Interval-Valued Exponential Type Pre-Invex Functions via Riemann-Liouville Fractional Integrals. Aims Math. 2022, 7, 2602–2617. [Google Scholar] [CrossRef]
  17. Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down h-Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
  18. Noor, M.; Noor, K.; Rashid, S. Some New Classes of Preinvex Functions and Inequalities. Mathematics 2018, 7, 29. [Google Scholar] [CrossRef]
  19. Sun, W. Some Hermite–Hadamard Type Inequalities for Generalized h-Preinvex Function via Lo cal Fractional Integrals and Their Applications. Adv. Differ. Equ. 2020, 2020, 426. [Google Scholar] [CrossRef]
  20. Kashuri, A.; Liko, R. Hermite-Hadamard Type Inequalities for Generalized (s,m,φ)-Preinvex Godunova-Levin Functions. Rad Hrvatske akademije znanosti i umjetnosti. Mat. Znan. 2018, 2018, 63–75. [Google Scholar]
  21. Ali, S.; Ali, R.S.; Vivas-Cortez, M.; Mubeen, S.; Rahman, G.; Nisar, K.S.; Ali, S.; Ali, R.S.; Vivas-Cortez, M.; Mubeen, S.; et al. Some Fractional Integral Inequalities via h-Godunova-Levin Preinvex Function. AIMS Math. 2022, 7, 13832–13844. [Google Scholar] [CrossRef]
  22. Tariq, M.; Sahoo, S.K.; Ntouyas, S.K.; Alsalami, O.M.; Shaikh, A.A.; Nonlaopon, K. Some Hermite–Hadamard and Hermite–Hadamard–Fej´er Type Fractional Inclusions Pertaining to Different Kinds of Generalized Preinvexities. Symmetry 2022, 14, 1957. [Google Scholar] [CrossRef]
  23. Sitho, S.; Ali, M.A.; Budak, H.; Ntouyas, S.K.; Tariboon, J. Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus. Mathematics 2021, 9, 1666. [Google Scholar] [CrossRef]
  24. Latif, M.; Kashuri, A.; Hussain, S.; Delavar, R. Trapezium-Type Inequalities for h-Preinvex Func tions and Their Applications. Filomat 2022, 36, 3393–3404. [Google Scholar] [CrossRef]
  25. Delavar, M.R. New Bounds for Hermite-Hadamard’s Trapezoid and Mid-Point Type Inequalities via Fractional Integrals. Miskolc Math. Notes 2019, 20, 849. [Google Scholar] [CrossRef]
  26. Zhang, T.; Deng, F.; Shi, P. Non-fragile finite-time stabilization for discrete mean-field stochastic systems. IEEE Trans. Autom. Control 2023, 68, 6423–6430. [Google Scholar] [CrossRef]
  27. Jiang, X.; Wang, Y.; Zhao, D.; Shi, L. Online Pareto optimal control of mean-field stochastic multi-player systems using policy iteration. Sci. China Inf. Sci. 2024, 67, 140202:1–140202:17. [Google Scholar] [CrossRef]
  28. Jia, G.; Luo, J.; Cui, C.; Kou, R.; Tian, Y.; Schubert, M. Valley quantum interference modulated by hyperbolic shear polaritons. Phys. Rev. B 2023, 109, 155417. [Google Scholar] [CrossRef]
  29. Tian, F.; Liu, Z.; Zhou, J.; Chen, L.; Feng, X.T. Quantifying Post-peak Behavior of Rocks with Type-I, Type-II, and Mixed Fractures by Developing a Quasi-State-Based Peridynamics. Rock Mech. Rock Eng. 2024, 57, 4835–4871. [Google Scholar] [CrossRef]
  30. Guo, S.; Zuo, X.; Wu, W.; Yang, X.; Zhang, J.; Li, Y.; Huang, C.; Bu, J.; Zhu, S. Mitigation of tropospheric delay induced errors in TS-InSAR ground deformation monitoring. Int. J. Digit. Earth 2024, 17, 2316107. [Google Scholar] [CrossRef]
  31. Guo, J.; Liu, Y.; Zou, Q.; Ye, L.; Zhu, S.; Zhang, H. Study on optimization and combination strategy of multiple daily runoff prediction models coupled with physical mechanism and LSTM. J. Hydrol. 2023, 624, 129969. [Google Scholar] [CrossRef]
  32. Chang, X.; Guo, J.; Qin, H.; Huang, J.; Wang, X.; Ren, P. Single-Objective and Multi-Objective Flood Interval Forecasting Considering Interval Fitting Coefficients. Water Resour. Manag. 2024, 38, 3953–3972. [Google Scholar] [CrossRef]
  33. Wang, Y.; Wu, W.; Christelle, M.; Sun, M.; Wen, Z.; Lin, Y.; Xu, J. Automated localization of mandibular landmarks in the construction of mandibular median sagittal plane. Eur. J. Med. Res. 2024, 29, 84. [Google Scholar] [CrossRef]
  34. Zhang, W.; Zhang, Y.; Jin, C.; Fang, R.; Hua, R.; Zang, X.; Zhang, H. The indicative role of inflammatory index in the progression of periodontal attachment loss. Eur. J. Med. Res. 2023, 28, 287. [Google Scholar] [CrossRef] [PubMed]
  35. Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite-Hadamard Inequalities for h-Preinvex Functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
  36. Zadeh, L.A. Fuzzy sets, Inform. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
  37. Cecconello, M.S.; Dorini, F.A.; Haeser, G. On fuzzy uncertainties on the logistic equation. Fuzzy Sets Syst. 2017, 328, 107–121. [Google Scholar] [CrossRef]
  38. Wang, Z.; Sun, W.; Hua, R.; Wang, Y.; Li, Y.; Zhang, H. Promising dawn in tumor microenvironment therapy: Engineering oral bacteria. Int. J. Oral Sci. 2024, 16, 24. [Google Scholar] [CrossRef] [PubMed]
  39. Chuai, Y.; Dai, B.; Liu, X.; Hu, M.; Wang, Y.; Zhang, H. Association of vitamin K, fibre intake and progression of periodontal attachment loss in American adults. BMC Oral Health 2023, 23, 303. [Google Scholar] [CrossRef]
  40. Kwiatkowska, M.; Kielan, K. Fuzzy logic and semiotic methods in modeling of medical concepts. Fuzzy Sets Syst. 2013, 214, 35–50. [Google Scholar] [CrossRef]
  41. Liu, X.; Dai, B.; Chuai, Y.; Hu, M.; Zhang, H. Associations between vitamin D levels and periodontal attachment loss. Clin. Oral Investig. 2023, 27, 4727–4733. [Google Scholar] [CrossRef]
  42. Zhu, L.; Ma, C.; Li, W.; Huang, M.; Wu, W.; Koh, C.S.; Blaabjerg, F. A Novel Hybrid Excitation Magnetic Lead Screw and Its Transient Sub-Domain Analytical Model for Wave Energy Conversion. IEEE Trans. Energy Convers. 2024, 39, 1726–1737. [Google Scholar] [CrossRef]
  43. Zhao, Y.; Yan, Y.; Jiang, Y.; Cao, Y.; Wang, Z.; Li, J.; Zhao, G. Release Pattern of Light Aromatic Hydrocarbons during the Biomass Roasting Process. Molecules 2024, 29, 1188. [Google Scholar] [CrossRef]
  44. Tang, H.; Li, Y.; Zhu, Z.; Zhan, Y.; Li, Y.; Li, K.; Wang, P.; Zhong, F.; Feng, W.; Yang, X. Rational design of high-performance epoxy/expandable microsphere foam with outstanding mechanical, thermal, and dielectric properties. J. Appl. Polym. Sci. 2024, 141, e55502. [Google Scholar] [CrossRef]
  45. Wang, T.; Zhang, S.; Yang, Q.; Liew, S.C. Account Service Network: A Unified Decentralized Web 3.0 Portal With Credible Anonymity. IEEE Netw. 2023, 37, 101–108. [Google Scholar] [CrossRef]
  46. Chen, D.; Zhao, T.; Han, L.; Feng, Z. Single-Stage Multi-Input Buck Type High-Frequency Link’s Inverters With Series and Simultaneous Power Supply. IEEE Trans. Power Electron. 2021, 37, 7411–7421. [Google Scholar] [CrossRef]
  47. Chen, D.; Zhao, J.; Qin, S. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Technol. Sci. 2023, 66, 2996–3010. [Google Scholar] [CrossRef]
  48. Chen, D.; Zhao, T.; Xu, S. Single-stage multi-input buck type high-frequency link’s inverters with multiwinding and time-sharing power supply. IEEE Trans. Power Electron. 2022, 37, 12763–12773. [Google Scholar] [CrossRef]
  49. Meng, S.; Meng, F.; Chi, H.; Chen, H.; Pang, A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J. Frankl. Inst. 2023, 360, 11397–11413. [Google Scholar] [CrossRef]
  50. Anastassiou, G.A. Fuzzy Mathematics: Approximation Theory, Volume 251 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
  51. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for-convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  52. Diamond, P.; Kloeden, P. Metric Space of Fuzzy Sets: Theory and Application; World Scientific: Singapore, 1994. [Google Scholar]
  53. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  54. Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic, Volume 295 of Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
  55. Costa, T.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  56. Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
  57. Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
  58. Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
  59. Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions. Symmetry 2022, 14, 313. [Google Scholar] [CrossRef]
  60. Khan, M.B.; Santos-García, G.; Zaini, H.G.; Treanță, S.; Soliman, M.S. Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus. Mathematics 2022, 10, 534. [Google Scholar] [CrossRef]
  61. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Abuahalnaja, K. Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions. Math. Biosci. Eng. 2021, 18, 6552–6580. [Google Scholar] [CrossRef] [PubMed]
  62. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  63. Matłoka, M. On some Hadamard-type inequalities for (h 1, h 2)-preinvex functions on the co-ordinates. J. Inequalities Appl. 2013, 2013, 227. [Google Scholar] [CrossRef]
  64. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  65. Stojiljkovic, V. Hermite–Hadamard–type fractional–integral inequalities for (p, h)–convex fuzzy–interval–valued mappings. Electron. J. Math. 2023, 5, 18–28. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alohali, H.; Breaz, V.-D.; Alsalami, O.M.; Cotirla, L.-I.; Alamer, A. Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane. Axioms 2024, 13, 684. https://doi.org/10.3390/axioms13100684

AMA Style

Alohali H, Breaz V-D, Alsalami OM, Cotirla L-I, Alamer A. Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane. Axioms. 2024; 13(10):684. https://doi.org/10.3390/axioms13100684

Chicago/Turabian Style

Alohali, Hanan, Valer-Daniel Breaz, Omar Mutab Alsalami, Luminita-Ioana Cotirla, and Ahmed Alamer. 2024. "Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane" Axioms 13, no. 10: 684. https://doi.org/10.3390/axioms13100684

APA Style

Alohali, H., Breaz, V. -D., Alsalami, O. M., Cotirla, L. -I., & Alamer, A. (2024). Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane. Axioms, 13(10), 684. https://doi.org/10.3390/axioms13100684

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop