Remarks on the Mathematical Modeling of Gene and Neuronal Networks by Ordinary Differential Equations
Abstract
:1. Introduction
2. Problem Formulation
3. Preliminary Results
3.1. Invariant Set
3.2. Nullclines
3.3. Critical Points
3.4. Linearization at a Critical Point
3.5. Regulatory Matrices With Zero Diagonal Elements
4. Focus Type Critical Points
5. Inhibition-Activation
6. The Case of Triangular Regulatory Matrix
6.1. Critical Points
6.2. Linearized System
7. Systems with Stable Periodic Solutions: Andronov–Hopf Type Bifurcations
7.1. 2D Case
7.2. 3D Case
8. Control and Management of ANN
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haykin, S. Neural networks. In A Comprehensive Foundation, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Chapeau-Blondeau, F.; Chauvet, G. Stable, Oscillatory, and Chaotic Regimes in the Dynamics of Small Neural Networks with Delay. Neural Netw. 1992, 5, 735–743. [Google Scholar]
- Funahashi, K.; Nakamura, Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw. 1993, 6, 801–806. [Google Scholar]
- Das, A.; Roy, A.B.; Das, P. Chaos in a three dimensional neural network. Appl. Math. Model. 2000, 24, 511–522. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Vo-Ho, V.K.; Darshan, B.; Le, N. Spiking Neural Networks and Their Applications: A Review. Brain Sci. 2022, 12, 63. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Vohradský, J. Neural network model of gene expression. Faseb J. 2001, 15, 846–854. [Google Scholar] [CrossRef]
- Kraynyukova, N.; Tchumatchenko, T. Stabilized supralinear network can give rise to bistable, oscillatory, and persistent activity. Proc. Natl. Acad. Sci. USA 2018, 115, 3464–3469. [Google Scholar]
- Ahmadian, Y.; Miller, K.D. What is the dynamical regime of cerebral cortex? Neuron 2021, 109, 3373–3391. [Google Scholar] [CrossRef]
- Sprott, J.C. Elegant Chaos; World Scientific: Singapore, 2010. [Google Scholar]
- Wilson, H.R.; Cowan, J.D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 1972, 12, 1–24. [Google Scholar]
- Furusawa, C.; Kaneko, K. A generic mechanism for adaptive growth rate regulation. PLoS Comput. Biol. 2008, 4, e3. [Google Scholar] [CrossRef]
- Alakwaa, F.M. Modeling of Gene Regulatory Networks: A Literature Review. J. Comput. Syst. Biol. 2014, 1, 1. [Google Scholar] [CrossRef]
- Brokan, E.; Sadyrbaev, F. On a differential system arising in the network control theory. Nonlinear Anal. Model. Control. 2016, 21, 687–701. [Google Scholar] [CrossRef]
- Schlitt, T. Approaches to Modeling Gene Regulatory Networks: A Gentle Introduction. In Silico Systems Biology; Methods in Molecular Biology (Methods and Protocols); Humana: Totowa, NJ, USA, 2013; Volume 1021, pp. 13–35. [Google Scholar] [CrossRef]
- Jong, H.D. Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. J. Comput Biol. 2002, 9, 67–103. [Google Scholar] [CrossRef]
- Ogorelova, D.; Sadyrbaev, F.; Sengileyev, V. Control in Inhibitory Genetic Regulatory Network Models. Contemp. Math. 2020, 1, 421–428. [Google Scholar] [CrossRef]
- Sadyrbaev, F.; Ogorelova, D.; Samuilik, I. A nullclines approach to the study of 2D artificial network. Contemp. Math. 2019, 1, 1–11. [Google Scholar] [CrossRef]
- Wang, L.Z.; Su, R.Q.; Huang, Z.G.; Wang, X.; Wang, W.X.; Grebogi, C.; Lai, Y.C. A geometrical approach to control and controllability of nonlinear dynamical networks. Nat. Commun. 2016, 7, 11323. [Google Scholar] [CrossRef]
- Koizumi, Y.; Miyamura, T.; Arakawa, S.I.; Oki, E.; Shiomoto, K.; Murata, M. Adaptive Virtual Network Topology Control Based on Attractor Selection. J. Light. Technol. 2010, 28, 1720–1731. [Google Scholar] [CrossRef]
- Vemuri, V. Artificial Neural Networks in Control Applications. Adv. Comput. 1993, 36, 203–254. [Google Scholar]
- Kozlovska, O.; Samuilik, I. Quasi-periodic solutions for a three-dimensional system in gene regulatory network. WSEAS Trans. Syst. 2023, 22, 727–733. [Google Scholar] [CrossRef]
- Ogorelova, D.; Sadyrbaev, F.; Samuilik, I. On Targeted Control over Trajectories on Dynamical Systems Arising in Models of Complex Networks. Mathematics 2023, 11, 2206. [Google Scholar] [CrossRef]
- | |||
---|---|---|---|
−0.9268 | −1.0366 − 0.6101 i | −1.0366 + 0.6101 i | |
1.1972 | −2.0986 − 0.8406 i | −2.0986 + 0.8406 i | |
−0.9821 | −1.0090 − 0.2189 i | −1.0090 + 0.2189 i |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogorelova, D.; Sadyrbaev, F. Remarks on the Mathematical Modeling of Gene and Neuronal Networks by Ordinary Differential Equations. Axioms 2024, 13, 61. https://doi.org/10.3390/axioms13010061
Ogorelova D, Sadyrbaev F. Remarks on the Mathematical Modeling of Gene and Neuronal Networks by Ordinary Differential Equations. Axioms. 2024; 13(1):61. https://doi.org/10.3390/axioms13010061
Chicago/Turabian StyleOgorelova, Diana, and Felix Sadyrbaev. 2024. "Remarks on the Mathematical Modeling of Gene and Neuronal Networks by Ordinary Differential Equations" Axioms 13, no. 1: 61. https://doi.org/10.3390/axioms13010061
APA StyleOgorelova, D., & Sadyrbaev, F. (2024). Remarks on the Mathematical Modeling of Gene and Neuronal Networks by Ordinary Differential Equations. Axioms, 13(1), 61. https://doi.org/10.3390/axioms13010061