On the Generalized Hilfer Fractional Coupled Integro-Differential Systems with Multi-Point Ordinary and Fractional Integral Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness Results
3.1. Uniqueness Results
- there exist constants , such that, for all andand
3.2. Existence Results
- are continuous functions and there exist real constants and , such that, ,
- where are given in (13).
- There exist continuous functions such that
4. Illustrative Examples
5. Conclusions
- (i)
- Our results correspond to the boundary conditions: if we take and in the results of this paper.
- (ii)
- By taking and in the obtained results, we get the ones associated with the boundary conditions of the form:
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer Science, Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Mubeen, S.; Habibullah, G.M. k–fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Dorrego, G.A. An alternative definition for the k-Riemann-Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef]
- Sousa, J.V.d.C.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Nieto, J.J.; Alghanmi, M.; Ahmad, B.; Alsaedi, A.; Alharbi, B. On fractional integrals and derivatives of a function with respect to another function. Fractals 2023, 31, 2340066. [Google Scholar] [CrossRef]
- Salim, A.; Lazreg, J.E.; Ahmad, B.; Benchohra, M.; Nieto, J.J. A Study on k-Generalized ψ-Hilfer derivative operator. Vietnam J. Math. 2022, 52, 25–43. [Google Scholar] [CrossRef]
- Pourhadi, E.; Saadati, R.; Nieto, J.J. On the attractivity of the solutions of a problem involving Hilfer fractional derivative via the measure of noncompactness. Fixed Point Theory 2023, 24, 343–366. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Ahmad, B.; Tariboon, J. (k,ψ)-Hilfer nonlocal integro-multi-point boundary value problems for fractional differential equations and inclusions. Mathematics 2022, 10, 2615. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application; Academic Press: London, UK, 2017. [Google Scholar]
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Almalahi, M.A.; Abdo, M.S.; Panchal, S.K. Existence and Ulam-Hyers stability results of a coupled system of ψ-Hilfer sequential fractional differential equations. Results Appl. Math. 2021, 10, 100142. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Bazighifan, O.; Panchal, S.K.; Askar, S.S.; Oros, G.I. Analytical study of two nonlinear coupled hybrid systems Involving generalized Hilfer fractional operators. Fractal Fract. 2021, 5, 178. [Google Scholar] [CrossRef]
- Ahmad, B.; Aljoudi, S. Investigation of a coupled system of Hilfer–Hadamard fractional differential equations with nonlocal coupled Hadamard fractional integral boundary conditions. Fractal Fract. 2023, 7, 178. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. On a nonlocal coupled system of Hilfer generalized proportional fractional differential equations. Symmetry 2022, 14, 738. [Google Scholar] [CrossRef]
- Samadi, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal coupled system for (k,φ)-Hilfer fractional differential equations. Fractal Fract. 2022, 6, 234. [Google Scholar] [CrossRef]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Ali, I.; Malik, N.A. Hilfer fractional advection–diffusion equations with power-law initial condition; a numerical study using variational iteration method. Comput. Math. Appl. 2014, 68, 1161–1179. [Google Scholar] [CrossRef]
- Bulavatsky, V.M. Mathematical models and problems of fractional-differential dynamics of some relaxation filtration processes. Cybern. Syst. Anal. 2018, 54, 727–736. [Google Scholar] [CrossRef]
- Bulavatsky, V.M. Mathematical modeling of fractional differential filtration dynamics based on models with Hilfer-Prabhakar derivative. Cybern. Syst. Anal. 2017, 53, 204–216. [Google Scholar] [CrossRef]
- Yang, M.; Alsaedi, A.; Ahmad, B.; Zhou, Y. Attractivity for Hilfer fractional stochastic evolution equations. Adv. Differ. Equ. 2020, 2020, 130. [Google Scholar] [CrossRef]
- Qin, X.; Rui, Z.; Peng, W. Fractional derivative of demand and supply functions in the cobweb economics model and Markov process. Front. Phys. 2023, 11, 1266860. [Google Scholar] [CrossRef]
- Ledesma, C.E.T.; Nyamoradi, N. (k,ψ)-Hilfer variational problem. J. Elliptic Parabol. Equ. 2022, 8, 681–709. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudprasert, C.; Ntouyas, S.K.; Ahmad, B.; Samadi, A.; Tariboon, J. On the Generalized Hilfer Fractional Coupled Integro-Differential Systems with Multi-Point Ordinary and Fractional Integral Boundary Conditions. Axioms 2024, 13, 51. https://doi.org/10.3390/axioms13010051
Sudprasert C, Ntouyas SK, Ahmad B, Samadi A, Tariboon J. On the Generalized Hilfer Fractional Coupled Integro-Differential Systems with Multi-Point Ordinary and Fractional Integral Boundary Conditions. Axioms. 2024; 13(1):51. https://doi.org/10.3390/axioms13010051
Chicago/Turabian StyleSudprasert, Chayapat, Sotiris K. Ntouyas, Bashir Ahmad, Ayub Samadi, and Jessada Tariboon. 2024. "On the Generalized Hilfer Fractional Coupled Integro-Differential Systems with Multi-Point Ordinary and Fractional Integral Boundary Conditions" Axioms 13, no. 1: 51. https://doi.org/10.3390/axioms13010051
APA StyleSudprasert, C., Ntouyas, S. K., Ahmad, B., Samadi, A., & Tariboon, J. (2024). On the Generalized Hilfer Fractional Coupled Integro-Differential Systems with Multi-Point Ordinary and Fractional Integral Boundary Conditions. Axioms, 13(1), 51. https://doi.org/10.3390/axioms13010051