Necessary and Sufficient Conditions for Commutator of the Calderón–Zygmund Operator on Mixed-Norm Herz-Slice Spaces
Abstract
:1. Introduction
2. Definition and Preliminary Lemmas
- (1)
- means that almost everywhere;
- (2)
- almost everywhere means that ;
- (3)
- almost everywhere means that ;
- (4)
- means that with is as in (5).and, if the norm of X satisfies the triangle inequality, then X is called a ball Banach function space, namely
- (5)
- Givenmoreover, let . There exists a positive constant , depending on B, such that,
- (6)
- Given
- (1)
- when ,
- (2)
- .Let . Suppose that the function is nonnegative, pertain to , and satisfies
- (1)
- if and
- (2)
- , then mollifier is defined the following convolution operator:
- (1)
- ∀, ,
- (2)
- there exist positive constants ,for .for .
3. Main Result
- (1)
- Given function f, and with ,
- (2)
- Given function f, and with ,We have T is bounded on .
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beurling, A. Construction and analysis of some convolution algebras. Ann. Inst. Fourier 1964, 14, 1–32. [Google Scholar] [CrossRef]
- Herz, C.S. Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier series. J. Math. Mech. 1968, 18, 283–324. [Google Scholar]
- Lu, S.; Yang, D.C. The decomposition of the weighted Herz spaces on Rn and its applications. Sci. China Ser. A 1995, 38, 147–158. [Google Scholar]
- Chikami, N. On Gagliardo-Nirenberg type inequalities in Fourier-Herz spaces. J. Funct. Anal. 2018, 275, 1138–1172. [Google Scholar] [CrossRef]
- Houamed, H. Well-posedness and long time behavior for the electron inertial Hall-MHD system in Besov and Kato-Herz spaces. J. Math. Anal. Appl. 2021, 501, 125–208. [Google Scholar] [CrossRef]
- Li, X.; Yang, D.C. Boundedness of some sublinear operators on Herz spaces. Ill. J. Math. 1996, 40, 484–501. [Google Scholar] [CrossRef]
- Min, D.; Wu, G.; Yao, Z. Global well-posedness of strong solution to 2D MHD equations in critical Fourier-Herz spaces. J. Math. Anal. Appl. 2021, 504, 125–345. [Google Scholar] [CrossRef]
- Wang, H. Some estimates for Bochner-Riesz operators on the weighted Herz-type Hardy spaces. J. Math. Anal. Appl. 2011, 381, 134–145. [Google Scholar] [CrossRef]
- Gröchenig, K. Foundations of Time-Frequency Analysis. Appl. Comput. Harmon. A 2001.
- Weisz, F. Gabor analysis and Hardy spaces. East J. Approx. 2009, 15, 1–24. [Google Scholar]
- Heil, C.E. An introduction to weighted Wiener amalgams. In Wavelets and their Applications; Krishna, M., Radha, R., Thangavelu, S., Eds.; Allied Publishers Private Limited: Mumbai, India, 2003; pp. 183–216. [Google Scholar]
- Wiener, N. On the representation of functions by trigonometric integrals. Math. Z. 1926, 24, 575–616. [Google Scholar] [CrossRef]
- Holland, F. Harmonic analysis on amalgams of Lp and ℓq. J. Lond. Math. Soc. 1975, 2, 295–305. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Gröbner, P. Banach spaces of distributions defined by decomposition methods. Math. Nachr. 1985, 123, 97–120. [Google Scholar] [CrossRef]
- Feichtinger, H.G. Banach spaces of distributions defined by decomposition methods. II. Math. Nachr. 1987, 132, 207–237. [Google Scholar] [CrossRef]
- Feichtinger, H.G. Generalized amalgams and its applications to Fourier transforms. Can. J. Math. 1990, 42, 395–409. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Weisz, F. Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Camb. Philos. Soc. 2006, 140, 509–536. [Google Scholar] [CrossRef]
- Weisz, F. Convergence of the inverse continuous wavelet transform in Wiener amalgam spaces. Analysis 2015, 35, 33–46. [Google Scholar] [CrossRef]
- Auscher, P.; Mourgoglou, M. Representation and uniqueness for boundary value elliptic problems via first order systems. Rev. Mat. Iberoam. 2019, 35, 241–315. [Google Scholar] [CrossRef]
- Auscher, P.; Prisuelos-Arribas, C. Tent space boundedness via extrapolation. Math. Z. 2017, 286, 1575–1604. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yang, D.C.; Yuan, W.; Wang, S.B. Real-variable characterizations of Orlicz-slice Hardy Spaces. Anal. Appl. 2019, 17, 597–664. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, J.; Wang, S.B. Herz-slice spaces and applications. arXiv 2021, arXiv:2204.08635v1. [Google Scholar]
- Zhang, L.H.; Zhou, J. Mixed-norm Herz-slice spaces and their applications. arXiv 2023, arXiv:2306.12013v1. [Google Scholar]
- Benedek, A.; Panzone, R. The space Lp, with mixed norm. Duke Math. J. 1961, 28, 301–324. [Google Scholar] [CrossRef]
- Hörmander, L. Estimates for translation invariant operators in Lp spaces. Acta Math. 1960, 104, 93–140. [Google Scholar] [CrossRef]
- Antonić, N.; Ivec, I. On the Hörmander-Mihlin theorem for mixed-norm Lebesgue spaces. J. Math. Anal. Appl. 2016, 433, 176–199. [Google Scholar] [CrossRef]
- Krylov, N.V. Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms. Funct. Anal. 2007, 250, 521–558. [Google Scholar] [CrossRef]
- Zhang, H.K.; Zhou, J. Mixed-norm amalgam spaces and their predual. Symmetry 2022, 14, 74. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, J.; Wang, S.B. Operators on mixed-norm amalgam spaces via extrapolation. J. Contemp. Math. Anal. Armen. Acad. Sci. 2022, preprint. [Google Scholar] [CrossRef]
- Stein, E.M.; Murphy, T.S. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Llinares, A.; Vukotić, D. Contractive inequalities for mixed norm spaces and the Beta function. J. Math. Anal. Appl. 2022, 509, 125–938. [Google Scholar] [CrossRef]
- Clavero, N.; Soria, J. Mixed norm spaces and rearrangement invariant estimates. J. Math. Anal. Appl. 2014, 419, 878–903. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, D.C.; Zhang, Y.Y. Mixed-norm Herz spaces and their applications in related Hardy spaces. Anal. Appl. 2022, 21, 1131–1222. [Google Scholar] [CrossRef]
- Sawano, Y.; Ho, K.-P.; Yang, D.C.; Wang, S.B. Hardy spaces for ball quasi-Banach function spaces. Diss. Math. 2017, 525, 1–102. [Google Scholar]
- Aydin, I. Weighted variable Sobolev spaces and capacity. J. Funct. Spaces Appl. 2012, 2012, 132690. [Google Scholar] [CrossRef]
- Grafakos, L. Classical Fourier Analysis, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Duoandikoetxea, J. Fourier Analysis. Grad. Stud. Math. Am. Math. Soc. 2001, 29, xviii+222. [Google Scholar]
- Tao, J.; Yang, D.C.; Yuan, W.; Zhang, Y.Y. Compactness characterizations of commutators on ball Banach function spaces. Potential Anal. 2023, 58, 645–679. [Google Scholar] [CrossRef]
- Janson, S. Mean oscillation and commutators of singular integral operators. Ark. Mat. 1978, 16, 263–270. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhou, J. Necessary and Sufficient Conditions for Commutator of the Calderón–Zygmund Operator on Mixed-Norm Herz-Slice Spaces. Axioms 2023, 12, 875. https://doi.org/10.3390/axioms12090875
Zhang L, Zhou J. Necessary and Sufficient Conditions for Commutator of the Calderón–Zygmund Operator on Mixed-Norm Herz-Slice Spaces. Axioms. 2023; 12(9):875. https://doi.org/10.3390/axioms12090875
Chicago/Turabian StyleZhang, Lihua, and Jiang Zhou. 2023. "Necessary and Sufficient Conditions for Commutator of the Calderón–Zygmund Operator on Mixed-Norm Herz-Slice Spaces" Axioms 12, no. 9: 875. https://doi.org/10.3390/axioms12090875
APA StyleZhang, L., & Zhou, J. (2023). Necessary and Sufficient Conditions for Commutator of the Calderón–Zygmund Operator on Mixed-Norm Herz-Slice Spaces. Axioms, 12(9), 875. https://doi.org/10.3390/axioms12090875
