A Solitonic Study of Riemannian Manifolds Equipped with a Semi-Symmetric Metric ξ-Connection
Abstract
:1. Introduction
- (i)
- , the Einstein tensor , (for Einstein soliton),
- (ii)
- , the trace-less Ricci tensor ,
- (iii)
- , the Schouten tensor (for Schouten soliton),
- (iv)
- , the Ricci tensor S (for RS).
2. Riemannian Manifolds with a Semi-Symmetric Metric -Connection
3. -ES on
Value of | Solitons | Poisson equation | Condition for R to be subharmonic and superharmonic |
Einstein soliton | R is subharmonic if , R is superharmonic if , | ||
traceless Ricci soliton | R is subharmonic if , R is superharmonic if , | ||
Schouten soliton | R is subharmonic if , R is superharmonic if . |
4. Gradient -ES on
5. Example
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamilton, R.S. The Ricci Flow on Surfaces, Mathematics and General Relativity. Contemp. Math. 1988, 71, 237–262. [Google Scholar]
- Besse, A.L. Einstein Manifolds, Classics in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Bourguignon, J.P. Ricci curvature and Einstein metrics. Glob. Differ. Geom. Glob. Anal. Lect. Notes Math. 1981, 838, 42–63. [Google Scholar]
- Bourguignon, J.P.; Lawson, H.B. Stability and isolation phenomena for Yang-mills fields. Commun. Math. Phys. 1981, 79, 189–230. [Google Scholar] [CrossRef]
- Dwivedi, S. Some results on Ricci-Bourguignon solitons and almost solitons. Can. Math. Bull. 2020, 64, 1–15. [Google Scholar] [CrossRef]
- Huang, G. Integral pinched gradient shrinking ρ-Einstein solitons. J. Math. Anal. Appl. 2017, 451, 1045–1055. [Google Scholar] [CrossRef]
- Mondal, C.K.; Shaikh, A.A. Some results on η-Ricci Soliton and gradient ρ-Einstein soliton in a complete Riemannian manifold. Commun. Korean Math. Soc. 2019, 34, 1279–1287. [Google Scholar]
- Patra, D.S. Some characterizations of ρ-Einstein solitons on Sasakian manifolds. Can. Math. Bull. 2022, 65, 1036–1049. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Cunha, A.W.; Mandal, P. Some characterizations of ρ-Einstein solitons. J. Geom. Phys. 2021, 166, 104270. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Mandal, P.; Mondal, C.K. Diameter estimation of gradient ρ-Einstein solitons. J. Geom. Phys. 2022, 177, 104518. [Google Scholar] [CrossRef]
- Suh, Y.J. Ricci-Bourguignon solitons on real hypersurfaces in the complex hyperbolic quadric. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2022, 116, 110. [Google Scholar] [CrossRef]
- Venkatesha, V.; Kumara, H.A. Gradient ρ-Einstein soliton on almost Kenmotsu manifolds. Ann. Dell’ Univ. Ferrara 2019, 65, 375–388. [Google Scholar] [CrossRef]
- Blaga, A.M. Some geometrical aspects of Einstein, Ricci and Yamabe solitons. J. Geom. Symmetry Phys. 2019, 52, 17–26. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Sarkar, S.; Dey, S.; Bhattacharyya, A. Ricci soliton and certain related metrics on a three-dimensional trans-Sasakian manifold. Universe 2022, 8, 595. [Google Scholar] [CrossRef]
- Li, Y.; Haseeb, A.; Ali, M. LP-Kenmotsu manifolds admitting η-Ricci-Yamabe Solitons and spacetime. J. Math. 2022, 2022, 6605127. [Google Scholar] [CrossRef]
- Suh, Y.J. Yamabe and gradient Yamabe solitons in the complex hyperbolic two-plane Grassmannians. Rev. Math. Phys. 2022, 34, 2250024. [Google Scholar] [CrossRef]
- Suh, Y.J. Yamabe and quasi-Yamabe solitons on hypersurfaces in the complex hyperbolic space. Mediterr. J. Math. 2023, 20, 69. [Google Scholar] [CrossRef]
- Turki, N.B.; Blaga, A.M.; Deshmukh, S. Soliton-type equations on a Riemannian manifold. Mathematics 2022, 10, 633. [Google Scholar] [CrossRef]
- Yoldas, H.I. On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150189. [Google Scholar] [CrossRef]
- Yano, K. On semi-symmetric metric connections. Rev. Roumaine Math. Pures Appl. 1970, 15, 1579–1586. [Google Scholar]
- Chaubey, S.K.; De, U.C. Characterization of three-dimensional Riemannian manifolds with a type of semi-symmetric metric connection admitting Yamabe soliton. J. Geom. Phys. 2020, 157, 103846. [Google Scholar] [CrossRef]
- Chaubey, S.K.; De, U.C. Three dimensional Riemannian manifolds and Ricci solitons. Quaest. Math. 2022, 45, 765–778. [Google Scholar] [CrossRef]
- Chaubey, S.K.; Lee, J.W.; Yadav, S. Riemannian manifolds with a semisymmetric metric P-connection. J. Korean Math. Soc. 2019, 56, 1113–1129. [Google Scholar]
- Haseeb, A.; Chaubey, S.K.; Khan, M.A. Riemannian 3-manifolds and Ricci-Yamabe solitons. Int. J. Geom. Methods Mod. Phys. 2023, 20, 2350015. [Google Scholar] [CrossRef]
- Yano, K. Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1970; Volume I. [Google Scholar]
- Chaubey, S.K.; Suh, Y.J. Riemannian concircular structure manifolds. Filomat 2022, 36, 6699–6711. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haseeb, A.; Chaubey, S.K.; Mofarreh, F.; Ahmadini, A.A.H. A Solitonic Study of Riemannian Manifolds Equipped with a Semi-Symmetric Metric ξ-Connection. Axioms 2023, 12, 809. https://doi.org/10.3390/axioms12090809
Haseeb A, Chaubey SK, Mofarreh F, Ahmadini AAH. A Solitonic Study of Riemannian Manifolds Equipped with a Semi-Symmetric Metric ξ-Connection. Axioms. 2023; 12(9):809. https://doi.org/10.3390/axioms12090809
Chicago/Turabian StyleHaseeb, Abdul, Sudhakar Kumar Chaubey, Fatemah Mofarreh, and Abdullah Ali H. Ahmadini. 2023. "A Solitonic Study of Riemannian Manifolds Equipped with a Semi-Symmetric Metric ξ-Connection" Axioms 12, no. 9: 809. https://doi.org/10.3390/axioms12090809
APA StyleHaseeb, A., Chaubey, S. K., Mofarreh, F., & Ahmadini, A. A. H. (2023). A Solitonic Study of Riemannian Manifolds Equipped with a Semi-Symmetric Metric ξ-Connection. Axioms, 12(9), 809. https://doi.org/10.3390/axioms12090809