Left and Right Operator Rings of a Γ Ring in Terms of Rough Fuzzy Ideals
Abstract
:1. Introduction
2. Preliminaries
- .
- ,
- ], for all and .
- | |||||||||||
c | d | ||||||||||
3. Right Operator Ring
3.1. Rough Fuzzy Sets in Right Operator Rings of a Ring
3.2. Characterizations of Rough Fuzzy Ideals in Right Operator Rings of a Ring
4. Left Operator Ring
4.1. Rough Fuzzy Sets in Left Operator Rings of a Ring
4.2. Characterizations of Rough Fuzzy Ideals in Left Operator Rings of a Ring
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
N | Gamma Ring |
RS | Rough Set |
Upper approximation | |
Lower approximation | |
IFS | Intuitionistic Fuzzy Set |
RFS | Rough Fuzzy Set |
RFI | Rough Fuzzy Ideal |
RFLI | Rough Fuzzy Left Ideal |
RFRI | Rough Fuzzy Right Ideal |
RFLI (N) | Set of all Rough Fuzzy Left Ideals of N |
RFRI (N) | Set of all Rough Fuzzy Right Ideals of N |
LOR | Left Operator Ring |
ROR | Right Operator Ring. |
References
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Shaqaqha, S. Fuzzy Hom–Lie Ideals of Hom–Lie Algebras. Axioms 2023, 12, 630. [Google Scholar] [CrossRef]
- Nobusawa, N. On a generalization of the ring theory. Osaka J. Math. 1964, 1, 81–89. [Google Scholar]
- Barnes, W.E. On the Γ-rings of nobusawa. Pac. J. Math. 1966, 18, 411–422. [Google Scholar] [CrossRef]
- Jun, Y.B.; Lee, C.Y. Fuzzy Γ-rings. Pusan Kyongnan Math. J. 1992, 8, 163–170. [Google Scholar]
- Ozturk, M.A.; Uçkun, M.; Jun, Y.B. Fuzzy ideals in gamma-rings. Turk. J. Math. 2003, 27, 369–374. [Google Scholar]
- Dutta, T.K.; Chanda, T. Structures of fuzzy ideals of Γ-Ring. Bull. Malaysian Math. Sci. Soc. 2005, 28, 9–18. [Google Scholar]
- Kyuno, S. A gamma ring with the right and left unities. Math. Jpn. 1979, 24, 191–193. [Google Scholar]
- Kyuno, S. On the radicals of Γ-rings. Osaka J. Math. 1975, 12, 639–645. [Google Scholar]
- Luh, J. On the theory of simple Γ–rings. Mich. Math. J. 1969, 16, 65–75. [Google Scholar] [CrossRef]
- Muhiuddin, G.; Abughazalah, N.; Mahboob, A.; Al-Kadi, D. A Novel study of fuzzy bi-ideals in ordered semirings. Axioms 2023, 12, 626. [Google Scholar] [CrossRef]
- Murray, F.J.; Neumann, J.V. On rings of operators. Ann. Math. 1936, 37, 116–229. [Google Scholar] [CrossRef]
- Alam, M.Z. Fuzzy rings and anti fuzzy rings with operators. IOSR J. Math. 2015, 11, 48–54. [Google Scholar]
- Palaniappan, N.; Ramachandran, M.A. note on characterization of intuitionistic fuzzy ideals in Γ-rings. Int. Math. Forum 2010, 5, 2553–2562. [Google Scholar]
- Palaniappan, N.; Veerappan, P.S.; Ramachandran, M. Characterizations of intuitionistic fuzzy ideals of Γ-rings. Appl. Math. Sci. 2010, 4, 1107–1117. [Google Scholar]
- Ezhilmaran, D.; Dhandapani, A. Study on intuitionistic fuzzy bi-ideals in gamma near rings. J. Sci. 2017, 4, 615–624. [Google Scholar]
- Yamin, M.; Sharma, P.K. Intuitionistic fuzzy rings with operators. Int. J. Math. Comput. Sci. 2018, 6, 1860–1866. [Google Scholar]
- Pawlak, Z. Rough sets. Int.J. Comput. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough Sets: Theoretical Aspects of Reasoning about Data; KluwarAcedemic Publishers: Dordrecht, The Netherlands, 1991; pp. 1–126. [Google Scholar]
- Davvaz, B. Roughness in rings. Inf. Sci. 2004, 164, 147–163. [Google Scholar] [CrossRef]
- Davvaz, B. Rough Algebraic Structures Corresponding to Ring Theory. In Algebraic Methods in General Rough Sets; Trends in Mathematics; Springer: Cham, Switzerland, 2018; pp. 657–695. [Google Scholar]
- Ali, M.I.; Davvaz, B.; Shabir, M. Some properties of generalized rough sets. Inf. Sci. 2013, 224, 170–179. [Google Scholar] [CrossRef]
- Agusfrianto, F.A.; Fitriani, F.; Mahatma, Y. Rough rings, rough subrings, and rough ideals. Fundam. Appl. Math. 2022, 5, 1–3. [Google Scholar]
- Dubois, D.; Prade, H. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–209. [Google Scholar] [CrossRef]
- Subha, V.S.; Dhanalakshmi, P. Rough approximations of interval rough fuzzy ideals in gamma-semigroups. Ann. Math. 2020, 3, 326. [Google Scholar]
- Malik, N.; Shabir, M.; Al-shami, T.M.; Gul, R.; Arar, M.; Hosny, M. Rough bipolar fuzzy ideals in semigroups. Complex Intell Syst. 2023, 9, 1–16. [Google Scholar] [CrossRef]
- Dhanalakshmi, P.; Subha, V.S. Interval rough fuzzy ideals in γ-near-rings. Bull. Int. Math. Virtual Inst. 2023, 13, 65–74. [Google Scholar]
- Gegeny, D.; Radeleczki, S. Rough L-fuzzy sets: Their representation and related structures. Int. J. Approx. Reason 2022, 142, 1–12. [Google Scholar] [CrossRef]
- Durgadevi, P.; Ezhilmaran, D. Discussion on rough fuzzy ideals in Γ-rings and its related properties. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2529. [Google Scholar]
- Pushpanathan, D.; Devarasan, E. Characterizations of Γ rings in terms of rough fuzzy ideals. Symmetry 2022, 14, 1705. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pushpanathan, D.; Devarasan, E. Left and Right Operator Rings of a Γ Ring in Terms of Rough Fuzzy Ideals. Axioms 2023, 12, 808. https://doi.org/10.3390/axioms12090808
Pushpanathan D, Devarasan E. Left and Right Operator Rings of a Γ Ring in Terms of Rough Fuzzy Ideals. Axioms. 2023; 12(9):808. https://doi.org/10.3390/axioms12090808
Chicago/Turabian StylePushpanathan, Durgadevi, and Ezhilmaran Devarasan. 2023. "Left and Right Operator Rings of a Γ Ring in Terms of Rough Fuzzy Ideals" Axioms 12, no. 9: 808. https://doi.org/10.3390/axioms12090808
APA StylePushpanathan, D., & Devarasan, E. (2023). Left and Right Operator Rings of a Γ Ring in Terms of Rough Fuzzy Ideals. Axioms, 12(9), 808. https://doi.org/10.3390/axioms12090808