Further Accurate Numerical Radius Inequalities
Abstract
:1. Introduction
2. Refinements of the Numerical Radius Inequalities
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kittaneh, F. Numerical radius inequalities for Hilbert space operators. Studia Math. 2005, 168, 73–80. [Google Scholar] [CrossRef]
- Kittaneh, F. A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 2003, 158, 11–17. [Google Scholar] [CrossRef]
- Dragomir, S.S. Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 2009, 5, 269–278. [Google Scholar]
- Alomari, M.W. On Cauchy-Schwarz type inequalities and applications to numerical radius inequalities. Ricerche Mat. 2022. [Google Scholar] [CrossRef]
- Kittaneh, F.; Moradi, H.R. Cauchy-Schwarz type inequalities and applications to numerical radius inequalities. Math. Ineq. Appl. 2020, 23, 1117–1125. [Google Scholar] [CrossRef]
- Sababheh, M.; Moradi, H.R. More accurate numerical radius inequalities (I). Linear Multilinear Algebra 2021, 69, 1964–1973. [Google Scholar] [CrossRef]
- Moradi, H.R.; Sababheh, M. More accurate numerical radius inequalities (II). Linear Multilinear Algebra 2021, 69, 921–933. [Google Scholar] [CrossRef]
- Burqan, A.; Alkhalely, S.; Conde, C. Some generalizations of numerical radius inequalities including the off-diagonal parts of block matrices. Filomat 2023, 37, 6355–6363. [Google Scholar]
- Aici, S.; Frakis, A.; Kittaneh, F. Refinements of some numerical radius inequalities for operators. Rend. Circ. Mat. Palermo II Ser. 2023. [Google Scholar] [CrossRef]
- Feki, K. Some A-numerical radius inequalities for d × d operator matrices. Rend. Circ. Mat. Palermo II Ser. 2022, 71, 85–103. [Google Scholar] [CrossRef]
- Altwaijry, N.; Dragomir, S.S.; Feki, K. On the joint -numerical radius of operators and related inequalities. Mathematics 2023, 11, 2293. [Google Scholar] [CrossRef]
- Conde, C.; Feki, K. Some numerical radius inequality for several semi-Hilbert space operators. Linear Multilinear Algebra 2023, 71, 1054–1071. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K.; Minculete, N. On some generalizations of Cauchy-Schwarz inequalities and their applications. Symmetry 2023, 15, 304. [Google Scholar] [CrossRef]
- Kittaneh, F.; Moradi, H.R.; Sababheh, M. Sharper bounds for the numerical radius. Linear Multilinear Algebra 2023, 1–11. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Refinement of numerical radius inequalities of complex Hilbert space operators. Acta Sci. Math. 2023, 1–10. [Google Scholar] [CrossRef]
- Jana, S.; Bhunia, P.; Paul, K. Euclidean operator radius inequalities of a pair of bounded linear operators and their applications. Bull. Braz. Math. Soc. New Ser. 2023, 54, 1. [Google Scholar] [CrossRef]
- Hatamleh, R.; Zolotarev, V.A. Triangular Models of Commutative Systems of Linear Operators Close to Unitary Ones. Ukr. Math. J. 2016, 68, 791–811. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Refinements of norm and numerical radius inequalities. Rocky Mountain J. Math. 2021, 51, 1953–1965. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. New upper bounds for the numerical radius of Hilbert space operators. Rocky Mountain J. Math. 2021, 167, 102959. [Google Scholar] [CrossRef]
- Kian, M. Operator Jensen inequality for superquadratic functions. Linear Algebra Appl. 2014, 456, 82–87. [Google Scholar] [CrossRef]
- Kian, M.; Dragomir, S.S. Inequalities involving superquadratic functions and operators. Mediterr. J. Math. 2014, 11, 1205–1214. [Google Scholar] [CrossRef]
- Kian, M.; Alomari, M.W. Improvements of trace inequalities for convex functions. Ann. Funct. Anal. 2022, 13, 64. [Google Scholar] [CrossRef]
- Tafazoli, S.; Moradi, H.R.; Furuichi, S.; Harikrishnan, P. Further inequalities for the numerical radius of Hilbert space operators. J. Math. Ineq. 2019, 13, 955–967. [Google Scholar] [CrossRef]
- Furuichi, S.; Minculete, N. Refined inequalities on the weighted logarithmic mean. J. Math. Ineq. 2020, 13, 1347–1357. [Google Scholar] [CrossRef]
- Burqan, A.; Abu-Snainah, A.; Saadeh, R. Improvements of logarithmic and identric mean inequalities for scalars and operators. J. Appl. Math. 2023, 2023, 5195233. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K.; Minculete, N. Further inequalities for the weighted numerical radius of operators. Mathematics 2022, 10, 3576. [Google Scholar] [CrossRef]
- Bhunia, P.; Bhanja, A.; Bag, S.; Paul, K. Bounds for the Davis–Wielandt radius of bounded linear operators. Ann. Funct. Anal. 2021, 12, 18. [Google Scholar] [CrossRef]
- Bhunia, P.; Paul, K. Some improvements of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 2020, 70, 1995–2013. [Google Scholar] [CrossRef]
- Feki, K.; Mahmoud, S.A.O.A. Davis-Wielandt shells of semi-Hilbertian space operators and its applications. Banach J. Math. Anal. 2020, 14, 1281–1304. [Google Scholar] [CrossRef]
- Hajmohamadi, M.; Lashkaripour, R.; Bakherad, M. Some generalizations of numerical radius on off-diagonal part of 2 × 2 operator matrices. J. Math. Inequalities 2018, 12, 447–457. [Google Scholar] [CrossRef]
- Hajmohamadi, M.; Lashkaripour, R.; Bakherad, M. Further refinements of generalized numerical radius inequalities for Hilbert space operators. Georgian Math. J. 2021, 28, 83–92. [Google Scholar] [CrossRef]
- Moghaddam, S.F.; Mirmostafaee, A.K.; Janfada, M. Some Sharp Estimations for Davis-Wielandt Radius in B(H). Mediterr. J. Math. 2022, 19, 283. [Google Scholar] [CrossRef]
- Alomari, M.W. On the Davis-Wielandt radius inequalities of Hilbert space operators. Linear Multilinear Algebra 2022, 1–25. [Google Scholar] [CrossRef]
- Alomari, M.W. Numerical radius inequalities for Hilbert space operators. Complex Anal. Oper. Theory 2021, 15, 111. [Google Scholar] [CrossRef]
- Hatamleh, R. On the form of correlation function for a class of nonstationary field with a zero spectrum. Rocky Mt. J. Math. 2003, 33, 159–173. [Google Scholar] [CrossRef]
- Burqan, A.; Dbabesh, H.; Qazza, A.; Khandaqi, M. New bounds for the eigenvalues of Matrix polynomials. Eur. J. Pure Appl. Math. 2023, 16, 808–818. [Google Scholar] [CrossRef]
- Furuta, T.; Mićić, J.; Pečarić, J.; Seo, Y. Mond–Pečarić Method in Operator Inequalities; Ele-Math Element Publishinhg House: Zagreb, Croatia, 2005. [Google Scholar]
- Kato, T. Notes on some inequalities for linear operators. Math. Ann. 1952, 125, 208–212. [Google Scholar] [CrossRef]
- Alomari, M.W. A generalization of Hermite–Hadamard’s inequality. Kragujevac J. Math. 2017, 41, 313–328. [Google Scholar] [CrossRef]
- Alomari, M.W.; Shebrawi, K.; Chesneau, C. Some generalized Euclidean operator radius inequalities. Axioms 2022, 11, 285. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qawasmeh, T.; Qazza, A.; Hatamleh, R.; Alomari, M.W.; Saadeh, R. Further Accurate Numerical Radius Inequalities. Axioms 2023, 12, 801. https://doi.org/10.3390/axioms12080801
Qawasmeh T, Qazza A, Hatamleh R, Alomari MW, Saadeh R. Further Accurate Numerical Radius Inequalities. Axioms. 2023; 12(8):801. https://doi.org/10.3390/axioms12080801
Chicago/Turabian StyleQawasmeh, Tariq, Ahmad Qazza, Raed Hatamleh, Mohammad W. Alomari, and Rania Saadeh. 2023. "Further Accurate Numerical Radius Inequalities" Axioms 12, no. 8: 801. https://doi.org/10.3390/axioms12080801
APA StyleQawasmeh, T., Qazza, A., Hatamleh, R., Alomari, M. W., & Saadeh, R. (2023). Further Accurate Numerical Radius Inequalities. Axioms, 12(8), 801. https://doi.org/10.3390/axioms12080801