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Abstract: The goal of this study is to refine some numerical radius inequalities in a novel way. The
new improvements and refinements purify some famous inequalities pertaining to Hilbert space
operators numerical radii. The inequalities that have been demonstrated in this work are not only an
improvement over old inequalities but also stronger than them. Several examples supporting the
validity of our results are provided as well.
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1. Introduction

Let A (J ) be the Banach algebra of all bounded linear operators defined on a complex
Hilbert space (J ; 〈·, ·〉) with the identity operator 1J in A (J ). Then, for a bounded
linear operator F on a Hilbert space J , the numerical range W(F) of a bounded operator
F ∈ A (J ) is defined by W(F) = {〈Fµ, µ〉 : µ ∈J , ‖µ‖ = 1}. Additionally, the numerical
radius is defined to be

ω(F) = sup
β∈W(F)

|β| = sup
‖µ‖=1

|〈Fµ, µ〉|.

We recall that the usual operator norm of an operator F is defined to be

‖F‖ = sup{‖Fµ‖ : µ ∈J , ‖µ‖ = 1}.

It is well known that the numerical radius ω(·) defines an operator norm on A (J ),
which is equivalent to the operator norm ‖ · ‖. Moreover, we have

1
2
‖F‖ ≤ ω(F) ≤ ‖F‖ (1)

for any F ∈ A (J ).
In 2003, Kittaneh [1] refined the right-hand side of (1) by obtaining that

ω(F) ≤ 1
2
‖|F|+ |F∗|‖ ≤ 1

2

(
‖F‖+ ‖F2‖1/2

)
(2)

for any F ∈ A (J ). Two years later, Kittaneh [2] proved his celebrated two-sided inequality

1
4
‖F∗F+ FF∗‖ ≤ ω2(F) ≤ 1

2
‖F∗F+ FF∗‖ (3)

for any F ∈ A (J ). These inequalities are sharp.
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In [3], Dragomir established an upper bound for the numerical radius of the product
of two Hilbert space operators, as follows:

ωr(G∗H) ≤ 1
2

∥∥∥|H|2r + |G|2r
∥∥∥ (r ≥ 1). (4)

In his recent work [4], Alomari refined the right-hand side of (3) and the recent results of
Kittaneh and Moradi [5], as follows:

ω2p(F) ≤ 1
4

δ
∥∥∥|F|2pδ + |F∗|2p(1−δ)

∥∥∥2
+

1
2
(1− δ)ωp(F)

∥∥∥|F|2pδ + |F∗|2p(1−δ)
∥∥∥ (5)

≤ 1
2

δ
∥∥∥|F|4pδ + |F∗|4p(1−δ)

∥∥∥+ 1
2
(1− δ)ωp(F)

∥∥∥|F|2pδ + |F∗|2p(1−δ)
∥∥∥

≤ 1
2

∥∥∥|F|4pδ + |F∗|4p(1−δ)
∥∥∥

for any operator F ∈ A (J ), p ≥ 1, and δ ∈ [0, 1]. In particular, it was shown that

ω2(F) ≤ 1
12
‖|F|+ |F∗|‖2 +

1
3

ω(F)‖|F|+ |F∗|‖ (6)

≤ 1
6

∥∥∥|F|2 + |F∗|2∥∥∥+ 1
3

ω(F)‖|F|+ |F∗|‖

≤ 1
4
‖|F|+ |F∗|‖2.

The first inequality in (6) was proved by Alomari in [4] and the second inequality by
Kittaneh and Moradi in [5].

In the same work [4], a refinement of (4) was proved, as follows:

ω2r(G∗H) ≤ 1
4

δ
∥∥∥|H|2r + |G|2r

∥∥∥2
+

1
2
(1− δ)ωr(H)

∥∥∥|H|2r + |G|2r
∥∥∥ (7)

≤ 1
2

δ
∥∥∥|F|4r + |G|4r

∥∥∥+ 1
2
(1− δ)ωr(H)

∥∥∥|H|2r + |G|2r
∥∥∥

≤ 1
2

∥∥∥|H|4r + |G|4r
∥∥∥.

In particular, it was shown that

ω2(G∗H) ≤ 1
12

∥∥∥|H|2 + |G|2∥∥∥2
+

1
3

ω(G∗H)
∥∥∥|H|2 + |G|2∥∥∥ (8)

≤ 1
6

∥∥∥|H|4 + |G|4∥∥∥+ 1
3

ω(G∗H)
∥∥∥|H|2 + |G|2∥∥∥

≤ 1
2

∥∥∥|H|4 + |G|4∥∥∥.

In [6], Sababheh and Moradi presented some new numerical radius inequalities.
Among others, the well-known Hermite–Hadamard inequality was used to perform the
following result.

ϕ(ω(F)) ≤
∥∥∥∥∫ 1

0
ϕ((1− s)|F|+ s|F∗|)ds

∥∥∥∥ ≤ 1
2
‖ϕ(|F|) + ϕ(|F∗|)‖ (9)

for every F ∈ A (J ) and increasing operator convex function ϕ : [0, ∞)→ [0, ∞).
On the other hand, Moradi and Sababheh, in [7], proved the following refinement of (9):

ϕ(ω(F)) ≤ 1
2

∥∥∥∥ϕ

(
3|F|+ |F∗|

4

)
+ ϕ

(
|F|+ 3|F∗|

4

)∥∥∥∥ (10)



Axioms 2023, 12, 801 3 of 15

for all increasing convex functions ϕ : [0, ∞)→ [0, ∞). In particular, they proved

ω2(F) ≤ 1
32

∥∥∥(3|F|+ |F∗|)2 + (|F|+ 3|F∗|)2
∥∥∥. (11)

The constant 1
32 is the best possible.

For more generalizations, counterparts, and recent related results, the reader may refer
to [8–22]. Further results can be found in [23–36].

In this work, further refinements of the previously mentioned inequalities are pre-
sented. Some new improvements and refinements purify the inequalities (4)–(11). The
inequalities demonstrated in this work are not only an improvement over previous in-
equalities but also stronger than them. We presented examples that proved these novel
inequalities and demonstrated that the refinements are more precise than existing ones.

2. Refinements of the Numerical Radius Inequalities

Lemma 1 (Theorem 1.4, [37]). If P ∈ A (J )+, then

〈Pc, c〉p ≤ 〈Ppc, c〉, p ≥ 1 (12)

for any vector c ∈J . The inequality (12) is reversed if 0 ≤ p ≤ 1.

Lemma 2 ([38]). If G ∈ A (J ), then

|〈Gλ, µ〉|2 ≤
〈
|G|2ηλ, λ

〉〈
|G∗|2(1−η)µ, µ

〉
, 0 ≤ η ≤ 1, (13)

for any vectors λ, µ ∈J , where |G| = (G∗G)1/2.

The following lemma is an operator version of the classical Jensen inequality.

Lemma 3 (Theorem 1.2, [37]). Let G be a selfadjoint operator whose spectrum G ⊂ [m, M] for
some scalars m ≤ M. If f (t) is a convex function on [m, M], then

ϕ(〈Gµ, µ〉) ≤ 〈ϕ(G)µ, µ〉 (14)

for any unit vector µ ∈J .

We are in a position to state our first main result.

Theorem 1. If ϕ : [0, ∞)→ [0, ∞) is an increasing and convex function, then

ϕ(ω(F)) ≤ 1
2

∥∥∥∥ϕ

(
2|F|+ |F∗|

3

)
+ ϕ

(
|F|+ 2|F∗|

3

)∥∥∥∥ (15)

for any Hilbert space operator F ∈ A (J ).

Proof. Since ϕ is increasing and operator convex, then by Jensen’s inequality (13), we have

ϕ(|〈Fµ, µ〉|)

≤ ϕ

(√
〈|F|µ, µ〉〈|F∗|µ, µ〉

)
≤ ϕ

(〈
|F|+ |F∗|

2
µ, µ

〉)
= ϕ

(
1
2
·
[〈(

2|F|+ |F∗|
3

)
µ, µ

〉
+

〈(
|F|+ 2|F∗|

3

)
µ, µ

〉])
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≤ 1
2

[
ϕ

(〈(
2|F|+ |F∗|

3

)
µ, µ

〉)
+ ϕ

(〈(
|F|+ 2|F∗|

3

)
µ, µ

〉)]
≤ 1

2

[〈
ϕ

(
2|F|+ |F∗|

3

)
µ, µ

〉
+

〈
ϕ

(
|F|+ 2|F∗|

3

)
µ, µ

〉]
=

1
2

〈[
ϕ

(
2|F|+ |F∗|

3

)
+ ϕ

(
|F|+ 2|F∗|

3

)]
µ, µ

〉
.

Taking the supremum over all unit vectors µ ∈ J in all previous inequalities, we
obtain the required result.

Corollary 1. If ϕ : [0, ∞)→ [0, ∞) is increasing and convex, then

ωp(F) ≤ 1
2

∥∥∥∥(2|F|+ |F∗|
3

)p
+

(
|F|+ 2|F∗|

3

)p∥∥∥∥
for any Hilbert space operator F ∈ A (J ). In a particular case,

ω2(F) ≤ 1
18

∥∥∥(2|F|+ |F∗|)2 + (|F|+ 2|F∗|)2
∥∥∥. (16)

The constant 1
18 is the best possible.

Proof. Considering f (s) = sp, s ≥ 0 (p ≥ 1) in (15), we obtain the desired result. The par-
ticular case in (16) follows directly by setting p = 2. To prove the sharpness of (16), assume
that (16) holds with another constant c > 0, i.e.,

ω2(F) ≤ c
∥∥∥(2|F|+ |F∗|)2 + (|F|+ 2|F∗|)2

∥∥∥. (17)

Assuming that F is a normal operator and employing the fact that for normal operators
we have ω(F) = ‖F‖, then by (17), we deduce that 1

18 ≤ c, and this shows that the constant
1

18 is the best possible, and thus, the inequality is sharp.

A non-trivial refinement of (15) is considered in the following result.

Theorem 2. If ϕ : [0, ∞)→ [0, ∞) is increasing and operator convex, then

ϕ(ω(F)) ≤
∥∥∥∥∫ 1

0
ϕ

(
(1− s)

(
2|F|+ |F∗|

3

)
+ s
(
|F|+ 2|F∗|

3

))
ds
∥∥∥∥

≤ 1
2

∥∥∥∥ϕ

(
2|F|+ |F∗|

3

)
+ ϕ

(
|F|+ 2|F∗|

3

)∥∥∥∥ (18)

≤
∥∥∥∥ ϕ(|F|) + ϕ(|F∗|)

2

∥∥∥∥
for any Hilbert space operator F ∈ A (J ).

Proof. Since ϕ is increasing and operator convex, then by Jensen’s inequality, we have

ϕ(|〈Fµ, µ〉|)

≤ ϕ

(√
〈|F|µ, µ〉〈|F∗|µ, µ〉

)
≤ ϕ

(〈
|F|+ |F∗|

2
µ, µ

〉)
= ϕ

(
1
2
·
[〈(

2|F|+ |F∗|
3

)
µ, µ

〉
+

〈(
|F|+ 2|F∗|

3

)
µ, µ

〉])



Axioms 2023, 12, 801 5 of 15

≤
∫ 1

0
ϕ

(
(1− s)

〈(
2|F|+ |F∗|

3

)
µ, µ

〉
+ s
〈(
|F|+ 2|F∗|

3

)
µ, µ

〉)
ds.

On the other hand,∫ 1

0
ϕ

(
(1− s)

〈(
2|F|+ |F∗|

3

)
µ, µ

〉
+ s
〈(
|F|+ 2|F∗|

3

)
µ, µ

〉)
ds

=
∫ 1

0
ϕ

(〈
(1− s)

(
2|F|+ |F∗|

3

)
µ, µ

〉
+

〈
s
(
|F|+ 2|F∗|

3

)
µ, µ

〉)
ds

≤
∫ 1

0
ϕ

(〈
(1− s)

(
2|F|+ |F∗|

3

)
+ s
(
|F|+ 2|F∗|

3

)
µ, µ

〉)
ds

≤
〈(∫ 1

0

(
(1− s) f

(
2|F|+ |F∗|

3

)
+ s f

(
|F|+ 2|F∗|

3

))
ds
)

µ, µ

〉
≤ 1

2

〈[
ϕ

(
2|F|+ |F∗|

3

)
+ ϕ

(
|F|+ 2|F∗|

3

)]
µ, µ

〉
≤
〈

ϕ(|F|) + ϕ(|F∗|)
2

µ, µ

〉
.

Taking the supremum over all unit vectors µ ∈ J in all previous inequalities, we
obtain the required result.

Corollary 2. Let F ∈ A (J ). Then,

ωp(F) ≤
∥∥∥∥∫ 1

0

(
(1− s)

(
2|F|+ |F∗|

3

)
+ s
(
|F|+ 2|F∗|

3

))p
ds
∥∥∥∥

≤ 1
2

∥∥∥∥(2|F|+ |F∗|
3

)p
+

(
|F|+ 2|F∗|

3

)p∥∥∥∥ (19)

≤
∥∥∥∥ |F|p + |F∗|p2

∥∥∥∥
for all 1 ≤ p ≤ 2.

Proof. The result follows by applying the increasing operator function ϕ(t) = tp, 1 ≤ p ≤ 2,
to inequality (18).

Corollary 3. Let F ∈ A (J ). Then,

ω2(F) ≤
∥∥∥∥∥
∫ 1

0

(
(1− s)

(
2|F|+ |F∗|

3

)
+ s
(
|F|+ 2|F∗|

3

))2
ds

∥∥∥∥∥
≤ 1

18

∥∥∥(2|F|+ |F∗|)2 + (|F|+ 2|F∗|)2
∥∥∥ (20)

≤ 1
2

∥∥∥|F|2 + |F∗|2∥∥∥.

Proof. Set p = 2 in (19).

Example 1. Consider F =

[
0 2
1 0

]
. It is easy to observe that ω(F) = 1.5. Applying the

inequalities in (20), we obtain

2.25 = ω2(F) ≤
∥∥∥∥∥
∫ 1

0

(
(1− s)

(
2|F|+ |F∗|

3

)
+ s
(
|F|+ 2|F∗|

3

))2
ds

∥∥∥∥∥ = 2.25
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≤ 1
18

∥∥∥(2|F|+ |F∗|)2 + (|F|+ 2|F∗|)2
∥∥∥ = 2.27

≤ 1
2

∥∥∥|F|2 + |F∗|2∥∥∥ = 2.5.

As we can see, the first inequality turns into an equality in this example and gives the exact
value of the numerical radius. Moreover, the second inequality improves the Sabaheh–Mordai
inequality (11). Indeed, applying (11), we obtain

2.25 = ω2(F) ≤ 1
32

∥∥∥(3|F|+ |F∗|)2 + (|F|+ 3|F∗|)2
∥∥∥ = 2.3125,

and this shows that our first two inequalities are much better than (11). Practically and more
preciously, the first two inequalities in (20) are stronger than the upper bound in (3), and the
inequalities in (9), (10), and (11).

Theorem 3. If ϕ : [0, ∞)→ [0, ∞) is an increasing and operator convex, then

ϕ(ω(G∗H)) ≤
∥∥∥∥∥
∫ 1

0
ϕ

(
(1− s)

(
2|H|2 + |G|2

3

)
+ s

(
|H|2 + 2|G|2

3

))
ds

∥∥∥∥∥
≤ 1

2

∥∥∥∥∥ϕ

(
2|H|2 + |G|2

3

)
+ ϕ

(
|H|2 + 2|G|2

3

)∥∥∥∥∥ (21)

≤

∥∥∥∥∥∥
ϕ
(
|H|2

)
+ ϕ

(
|G|2

)
2

∥∥∥∥∥∥
for any two operators H,G ∈ A (J ).

Proof. Let µ ∈J be a unit vector. Then, by the Cauchy–Schwarz inequality, we have

ϕ(|〈G∗Hµ, µ〉|) = ϕ(|〈Hµ,Gµ〉|)
≤ ϕ(‖Hµ‖‖Gµ‖)

= ϕ

(〈
|H|2µ, µ

〉 1
2
〈
|G|2µ, µ

〉 1
2
)

≤ ϕ


〈
|H|2µ, µ

〉
+
〈
|G|2µ, µ

〉
2

 (by AM-GM inequality).

The rest of the proof is typically similar to that given in the proof of Theorem 1;
by replacing |F| and |F∗| by |H|2 and |G|2, respectively, we obtain the required result.

We finish this work by introducing some refined improvements to numerical radius
inequalities. Among others, Sababheh and Moradi in [6,7], presented some new general
forms of numerical radius inequalities for Hilbert space operators. In fact, Sababheh and
Moradi used the classical Hermite–Hadamard inequality and its operator version to prove
their results. We refine and extend these inequalities in tlight of the Alomari refinement
extension of the Hermite–Hadamard inequality [39].

Theorem 4. Let Ψ : A (J ) → A (R) be a positive unital linear map and F ∈ A (J ).
If ϕ : [0, ∞)→ [0, ∞) is an increasing and convex function, then

ϕ
(

ω2(Ψ(F))
)

≤ ϕ

(
1
2

∥∥∥Ψ
(
|F|2 + |F∗|2

)∥∥∥)
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≤ 1
2

[
ϕ

(∥∥∥∥∥Ψ

(
3|F|2 + |F∗|2

4

)∥∥∥∥∥
)
+ ϕ

(∥∥∥∥∥Ψ

(
|F|2 + 3|F∗|2

4

)∥∥∥∥∥
)]

≤ sup
µ∈J
‖µ‖=1

∫ 1

0
ϕ

(∥∥∥Ψ1/2
(
(1− t)|F|2 + t|F∗|2

)
µ
∥∥∥2
)

dt (22)

≤ 1
2

[
ϕ

(∥∥∥∥∥Ψ

(
|F|2 + |F∗|2

2

)∥∥∥∥∥
)
+

1
2

∥∥∥Ψ
(

ϕ
(
|F|2

)
+ ϕ

(
|F∗|2

))∥∥∥]

≤ 1
2

∥∥∥Ψ
(

ϕ
(
|F|2

)
+ ϕ

(
|F∗|2

))∥∥∥
for any unit vector µ ∈J .

Proof. In [40], Alomari proved the following refinement of the classical Hermite–Hadamard
inequality:

(b− a)
2

[
g
(

3a + b
4

)
+ g
(

a + 3b
4

)]
≤
∫ b

a
g(t)dt (23)

≤ (b− a)
2

[
g
(

a + b
2

)
+

g(a) + g(b)
2

]
for every convex function g : [a, b] → R. Moreover, since g is convex, then we may
rewrite (23), as follows

g
(

a + b
2

)
= g

(
1
2

[
3a + b

4
+

a + 3b
4

])
≤ 1

2

[
g
(

3a + b
4

)
+ g
(

a + 3b
4

)]
≤
∫ 1

0
g((1− t)a + tb)dt (24)

≤ 1
2

[
g
(

a + b
2

)
+

g(a) + ϕ(b)
2

]
≤ g(a) + g(b)

2
.

Let F = K + iL be the Cartesian decomposition of F ∈ A (J ). Then, we have

|F|2 + |F∗|2 = F∗F+ FF∗ = 2
(

K2 + L2
)

, (25)

and

|〈Fµ, µ〉|2 = 〈Kµ, µ〉+ 〈Lµ, µ〉, ∀µ ∈J . (26)

Replacing a and b with
〈

Ψ
(
|F|2

)
µ, µ

〉
and

〈
Ψ
(
|F∗|2

)
µ, µ

〉
in (24), for µ ∈ J such

that ‖µ‖ = 1, we obtain

ϕ


〈

Ψ
(
|F|2

)
µ, µ

〉
+
〈

Ψ
(
|F∗|2

)
µ, µ

〉
2


≤ 1

2

ϕ

3
〈

Ψ
(
|F|2

)
µ, µ

〉
+
〈

Ψ
(
|F∗|2

)
µ, µ

〉
4

+ ϕ


〈

Ψ
(
|F|2

)
µ, µ

〉
+ 3
〈

Ψ
(
|F∗|2

)
µ, µ

〉
4


≤
∫ 1

0
ϕ
(〈

Ψ
(
(1− t)|F|2 + t|F∗|2

)
µ, µ

〉)
dt
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≤ 1
2

ϕ


〈

Ψ
(
|F|2

)
µ, µ

〉
+
〈

Ψ
(
|F∗|2

)
µ, µ

〉
2

+
ϕ
(〈

Ψ
(
|F|2

)
µ, µ

〉)
+ ϕ

(〈
Ψ
(
|F∗|2

)
µ, µ

〉)
2


≤

ϕ
(〈

Ψ
(
|F|2

)
µ, µ

〉)
+ ϕ

(〈
Ψ
(
|F∗|2

)
µ, µ

〉)
2

.

However, since ϕ is convex and Ψ is a positive unital linear map, the last two inequalities
can be refined, respectively, as follows:

1
2

ϕ


〈

Ψ
(
|F|2

)
µ, µ

〉
+
〈

Ψ
(
|F∗|2

)
µ, µ

〉
2

+
ϕ
(〈

Ψ
(
|F|2

)
µ, µ

〉)
+ ϕ

(〈
Ψ
(
|F∗|2

)
µ, µ

〉)
2


≤ 1

2

ϕ


〈

Ψ
(
|F|2

)
µ, µ

〉
+
〈

Ψ
(
|F∗|2

)
µ, µ

〉
2

+

〈
Ψ
(

ϕ
(
|F|2

))
µ, µ

〉
+
〈

Ψ
(

ϕ
(
|F∗|2

))
µ, µ

〉
2

,

and

ϕ
(〈

Ψ
(
|F|2

)
µ, µ

〉)
+ ϕ

(〈
Ψ
(
|F∗|2

)
µ, µ

〉)
2

≤

〈
Ψ
(

ϕ
(
|F|2

))
µ, µ

〉
+
〈

Ψ
(

ϕ
(
|F∗|2

))
µ, µ

〉
2

=
1
2

〈
Ψ
(

ϕ
(
|F|2

)
+ ϕ

(
|F∗|2

))
µ, µ

〉
.

Combining the above two inequalities together, we obtain

sup
µ∈J
‖µ‖=1

∫ 1

0
ϕ

(∥∥∥Ψ1/2
(
(1− t)|F|2 + t|F∗|2

)
µ
∥∥∥2
)

dt

≤ 1
2

[
ϕ

(∥∥∥∥∥Ψ

(
|F|2 + |F∗|2

2

)∥∥∥∥∥
)
+

1
2

∥∥∥Ψ
(

ϕ
(
|F|2

)
+ ϕ

(
|F∗|2

))∥∥∥]

≤ 1
2

∥∥∥Ψ
(

ϕ
(
|F|2

)
+ ϕ

(
|F∗|2

))∥∥∥.

Now, since ϕ is increasing, we have

ϕ
(
|〈Ψ(F)µ, µ〉|2

)
= ϕ

(
〈Ψ(K)µ, µ〉2 + 〈Ψ(L)µ, µ〉2

)
≤ ϕ

(〈
Ψ2(K)µ, µ

〉
+
〈

Ψ2(L)µ, µ
〉)

= ϕ
(〈

Ψ
(

K2 + L2
)

µ, µ
〉)

= ϕ


〈

Ψ
(
|F|2 + |F∗|2

)
µ, µ

〉
2


= ϕ


〈

Ψ
(
|F|2

)
µ, µ

〉
+
〈

Ψ
(
|F∗|2

)
µ, µ

〉
2

.

Taking the supremum over all unit vectors µ ∈ J in all previous inequalities, we
obtain the required result.

The following example ensures that the inequalities in (22) refine the Sababheh–Moradi
inequality (Theorem 2.2, [6]).
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Example 2. Consider F =

[
4 2
0 1

]
, ϕ(t) = t2 (t ≥ 0), and the unital positive linear map

Ψ : M2(C)→M2(C) given by Ψ(F) = 1
2 (tr(F))I for all matrices F ∈M2(C). Employing (22),

we obtain

ω4(Ψ(F)) = 39.0625

≤ 1
4

∥∥∥Ψ
(
|F|2 + |F∗|2

)∥∥∥2
= 56.25

≤ 1
2

∥∥∥∥∥Ψ

(
3|F|2 + |F∗|2

4

)∥∥∥∥∥
2

+

∥∥∥∥∥Ψ

(
|F|2 + 3|F∗|2

4

)∥∥∥∥∥
2
 = 175.78

≤ sup
µ∈J
‖µ‖=1

∫ 1

0

∥∥∥Ψ1/2
(
(1− t)|F|2 + t|F∗|2

)
µ
∥∥∥4

dt

≤ 1
8

∥∥∥Ψ
(
|F|2 + |F∗|2

)∥∥∥2
+

1
4

∥∥∥Ψ
(
|F|4 + |F∗|4

)∥∥∥ = 251.125

≤ 1
2

∥∥∥Ψ
(
|F|4 + |F∗|4

)∥∥∥ = 446.

The following result gives an extensive alternative proof of (Theorem 2.2, [6]). The ap-
proach presented in the proof is completely different and motivated by the concept of the
Cartesian decomposition of an arbitrary Hilbert space operator. At the same time, a chain
of inequalities improves the result in [6] and refines the lower bound of the celebrated
Kittaneh inequality (3).

Theorem 5. Let K+ iL be the Cartesian decomposition of an operator F ∈ A (J ). If ϕ : [0, ∞)→
[0, ∞) is a non-negative increasing operator convex function, then we have

ϕ
(

ω2(S)
)
≥

ϕ
(
‖K‖2

)
+ ϕ

(
‖L‖2

)
2

(27)

≥
ϕ
(∥∥K2

∥∥)+ ϕ
(∥∥L2

∥∥)
2

≥
∫ 1

0

∥∥∥δϕ
(

K2
)
+ (1− δ)ϕ

(
L2
)∥∥∥dδ

≥
∫ 1

0

∥∥∥ϕ
(

δK2 + (1− δ)L2
)∥∥∥dδ

≥
∥∥∥∥∫ 1

0
ϕ
(

δK2 + (1− δ)L2
)

dδ

∥∥∥∥
≥
∥∥∥∥ϕ

(
S∗S + SS∗

4

)∥∥∥∥.

Proof. Since F = K + iL, then we have

|〈Fµ, µ〉|2 = 〈Kµ, µ〉2 + 〈Lµ, µ〉2, µ ∈J .

The monotonicity of ϕ and the above identity imply that

δϕ
(
|〈Fµ, µ〉|2

)
≥ δϕ

(
〈Kµ, µ〉2

)
,

and

(1− δ)ϕ
(
|〈Fµ, µ〉|2

)
≥ (1− δ)ϕ

(
〈Lµ, µ〉2

)
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for all δ ∈ [0, 1]. Therefore,

ϕ
(
|〈Fµ, µ〉|2

)
= δϕ

(
|〈Fµ, µ〉|2

)
+ (1− δ)ϕ

(
|〈Fµ, µ〉|2

)
≥ δϕ

(
〈Kµ, µ〉2

)
+ (1− δ)ϕ

(
〈Lµ, µ〉2

)
.

Taking the supremum over all unit vectors µ ∈J , since ϕ is increasing, we obtain

ϕ
(

ω2(F)
)
≥ δϕ

(
‖K‖2

)
+ (1− δ)ϕ

(
‖L‖2

)
≥ δϕ

(∥∥∥K2
∥∥∥)+ (1− δ)ϕ

(∥∥∥L2
∥∥∥) (since ‖F2‖ ≤ ‖F‖2, for all F ∈ A (J ))

= δ
∥∥∥ϕ
(

K2
)∥∥∥+ (1− δ)

∥∥∥ϕ
(

L2
)∥∥∥ (since ϕ(‖F‖) = ‖ϕ(|F|)‖)

≥
∥∥∥δϕ

(
K2
)
+ (1− δ)ϕ

(
L2
)∥∥∥ (by triangle inequality)

≥
∥∥∥ϕ
(

δK2 + (1− δ)L2
)∥∥∥ (ϕ is operator convex).

Integrating with respect to δ over [0, 1], we have

ϕ
(

ω2(F)
)
≥

ϕ
(
‖K‖2

)
+ ϕ

(
‖L‖2

)
2

≥
ϕ
(∥∥K2

∥∥)+ ϕ
(∥∥L2

∥∥)
2

=

∥∥ϕ
(
K2)∥∥+ ∥∥ϕ

(
L2)∥∥

2

≥
∫ 1

0

∥∥∥δϕ
(

K2
)
+ (1− δ)ϕ

(
L2
)∥∥∥dδ

≥
∫ 1

0

∥∥∥ϕ
(

δK2 + (1− δ)L2
)∥∥∥dδ

≥
∥∥∥∥∫ 1

0
ϕ
(

δK2 + (1− δ)L2
)

dδ

∥∥∥∥ (by triangle inequality)

≥
∥∥∥∥ϕ

(
K2 + L2

2

)∥∥∥∥ (ϕ is operator convex)

=

∥∥∥∥ϕ

(
F∗F+ FF∗

4

)∥∥∥∥,

and this proves the required result.

The following result refines (27) and gives a better estimate of the numerical radius.

Theorem 6. Let K + iL be the Cartesian decomposition of an operator F ∈ A (J ).
If ϕ : [0, ∞)→ [0, ∞) is a non-negative increasing operator convex function, then

ϕ
(

ω2(F)
)
≥ r

r + s
ϕ
(
‖K‖2

)
+

s
r + s

ϕ
(
‖L‖2

)
≥
∥∥∥∥ϕ

(
rK2 + sL2

r + s

)∥∥∥∥, (28)

for all real numbers r, s > 0.

Proof. Our proof is similar to that presented in the proof of Theorem 5. Let r, s > 0, and
F = K + iL. Then,

|〈Fµ, µ〉|2 = 〈Kµ, µ〉2 + 〈Lµ, µ〉2, µ ∈J .
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The monotonicity of ϕ and the above identity imply that

r
r + s

ϕ
(
|〈Fµ, µ〉|2

)
≥ r

r + s
ϕ
(
〈Kµ, µ〉2

)
,

and

s
r + s

ϕ
(
|〈Fµ, µ〉|2

)
≥ s

r + s
ϕ
(
〈Lµ, µ〉2

)
for all positive real numbers r, s > 0. Therefore,

ϕ
(
|〈Fµ, µ〉|2

)
=

r
r + s

ϕ
(
|〈Fµ, µ〉|2

)
+

s
r + s

ϕ
(
|〈Fµ, µ〉|2

)
≥ r

r + s
ϕ
(
〈Kµ, µ〉2

)
+

s
r + s

ϕ
(
〈Lµ, µ〉2

)
.

Taking the supremum over all unit vector µ ∈J , since ϕ is increasing, we obtain

ϕ
(

ω2(F)
)
≥ r

r + s
ϕ
(
‖K‖2

)
+

s
r + s

ϕ
(
‖L‖2

)
≥ r

r + s
ϕ
(∥∥∥K2

∥∥∥)+ s
r + s

ϕ
(∥∥∥L2

∥∥∥) (since ‖F2‖ ≤ ‖F‖2, for all F ∈ A (J ))

=
r

r + s

∥∥∥ϕ
(

K2
)∥∥∥+ s

r + s

∥∥∥ϕ
(

L2
)∥∥∥ (since ϕ(‖F‖) = ‖ϕ(|F|)‖)

≥
∥∥∥∥ r

r + s
ϕ
(

K2
)
+

s
r + s

ϕ
(

L2
)∥∥∥∥ (by triangle inequality)

≥
∥∥∥∥ϕ

(
rK2 + sL2

r + s

)∥∥∥∥ (ϕ is operator convex),

which yields the desired result.

Example 3. Consider F =

[
2 1
3 5

]
. It is easy to observe that ω(F) = 6. Then, define the func-

tion ϕ(t) = t2 (t ≥ 0). By applying the first inequality in (28) (which is the same result given in
(Theorem 2.2, [6]), we have that ω(F) ≥ 5.04635 (the case when r = s = 1)

ω(F) = 6 ≥


5.04635, if r = 1, s = 1;
5.42213, if r = 2, s = 1;
5.84414, if r = 9, s = 1;
5.97039, if r = 50, s = 1;
5.99850, if r = 1000, s = 1.

It is possible to improve estimations by changing the values of r and s. In this example, since r
is greater than s, we obtain a better estimate (lower bound), which improves the Mordai–Sabaheh
inequality (the case of r = s = 1). Generally, once the values of ‖K‖ and r are large (small)
enough, and once the values of ‖L‖ and s are small (large), we obtain better estimates. In light of
this, it is convenient to note that (30) is always an accurate lower bound. This suggests that the
Mordai–Sabaheh inequality can be improved by finding the appropriate values of r and s. In practice,
this can be performed via numerical optimization.

In [7], Moradi and Sabaheh used the interesting inequality(
H+G

2

)2
≤
(
H+G

2

)2
+

(
|H−G|

2

)2
=

H2 +G2

2
(29)
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for every self-adjoint operator H,G ∈ A (J ) to prove the following refinement of the
left-hand side of (3), as follows:

1
4
‖F∗F+ FF∗‖ ≤ 1

4

∥∥∥∥(F∗F+ FF∗)2 +
∣∣∣F2 + (F∗)2

∣∣∣2∥∥∥∥ 1
2
≤ ω2(F). (30)

By recalling the original result in [7], an interesting improvement to (30) holds. Namely,
we have

1
4
‖F∗F+ FF∗‖ ≤ 1

4

∥∥∥∥(F∗F+ FF∗)2 +
(
F2 + (F∗)2

)2
∥∥∥∥ 1

2

≤ 1
4
√

2

(
‖F+ F∗‖4 + ‖F− F∗‖4

) 1
2 (31)

≤ ω2(F).

The next result extends and refines inequality (31) as follows:

Theorem 7. Let K + iL be the Cartesian decomposition of F ∈ A (J ). Then,

1
4

∥∥∥∥( r− s
r + s

)
·
(
F2 + (F∗)2

)
+ (FF∗ + F∗F)

∥∥∥∥
≤ 1

4

∥∥∥∥∥
[(

r− s
r + s

)
·
(
F2 + (F∗)2

)
+ (FF∗ + F∗F)

]2

+

[(
F2 + (F∗)2

)
+

(
r− s
r + s

)
· (FF∗ + F∗F)

]2
∥∥∥∥∥

1
2

≤ 1
2
√

2
·
(

r2‖F+ F∗‖4 + s2‖F− F∗‖4

(r + s)2

) 1
2

(32)

≤ ω2(F),

for all positive real numbers r, s.

Proof. Since K + iL is the Cartesian decomposition of F, then for all real numbers r, s > 0,
we obtain

rK2 + sL2

r + s
=

(
r− s
r + s

)
· F

2 + (F∗)2

4
+

FF∗ + F∗F

4
,

and

rK2 − sL2

r + s
=

F2 + (F∗)2

4
+

(
r− s
r + s

)
· FF

∗ + F∗F

4
.

Replacing H and G by 2r
r+s K2 and 2s

r+s L2 (∀r, s > 0), respectively, in (29), we obtain

(
rK2 + sL2

r + s

)2

≤
(

rK2 + sL2

r + s

)2

+

(∣∣rK2 − sL2
∣∣

r + s

)2

=
2r2K4 + 2s2L4

(r + s)2 .
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Consequently,∥∥∥∥∥
(

r− s
r + s

)
· F

2 + (F∗)2

4
+

FF∗ + F∗F

4

∥∥∥∥∥
2

=

∥∥∥∥ rK2 + sL2

r + s

∥∥∥∥2

=

∥∥∥∥∥
(

rK2 + sL2

r + s

)2
∥∥∥∥∥

≤

∥∥∥∥∥∥
(

rK2 + sL2

r + s

)2

+

(∣∣rK2 − sL2
∣∣

r + s

)2
∥∥∥∥∥∥

=

∥∥∥∥∥2r2K4 + 2s2L4

(r + s)2

∥∥∥∥∥
≤ 2r2‖K‖4 + 2s2‖L‖4

(r + s)2

≤ ω4(F),

which gives the desired result in (32).

Remark 1. In particular, choosing r = s in (32), we can refer to (31).

Remark 2. However, (32) still offers a better estimate than (31). By choosing specific values for r
and s, we would then obtain a better lower bound. To verify this assertion, consider Example 3. We
leave the investigation of this note to the interested reader. Nevertheless, once the values of ‖K‖ and
r are large (small) enough and the values of ‖L‖ and s are small (large) enough, we obtain a better
estimation than (31).

3. Conclusions

This study refines several well-known and sharp numerical radius inequalities ob-
tained in the literature using more accurate numerical radius inequalities. Namely, as
shown, inequality (12) refines the Sababheh–Moradi inequality (9). In fact, (16) is sharper
than both (14) and (11). An extensive alternative proof of (Theorem 2.2, [6]) is also provided.
Among other inequalities, two interesting and novel results are established. Namely, it is
shown that

ϕ
(

ω2(F)
)
≥ r

r + s
ϕ
(
‖K‖2

)
+

s
r + s

ϕ
(
‖L‖2

)
≥
∥∥∥∥ϕ

(
rK2 + sL2

r + s

)∥∥∥∥
for every increasing operator convex function ϕ and all real numbers r, s > 0. Additionally,

1
4

∥∥∥∥( r− s
r + s

)
·
(
F2 + (F∗)2

)
+ (FF∗ + F∗F)

∥∥∥∥
≤ 1

4

∥∥∥∥∥
[(

r− s
r + s

)
·
(
F2 + (F∗)2

)
+ (FF∗ + F∗F)

]2

+

[(
F2 + (F∗)2

)
+

(
r− s
r + s

)
· (FF∗ + F∗F)

]2
∥∥∥∥∥

1
2

≤ 1
2
√

2
·
(

r2‖F+ F∗‖4 + s2‖F− F∗‖4

(r + s)2

) 1
2

≤ ω2(F),

is valid for all r, s > 0.
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