Next Article in Journal
Joint Discrete Universality in the Selberg–Steuding Class
Next Article in Special Issue
Solving Integral Equations via Fixed Point Results Involving Rational-Type Inequalities
Previous Article in Journal
Robust Optimality Conditions for a Class of Fractional Optimization Problems
Previous Article in Special Issue
Existence, Approximation and Stability of Fixed Point for Cirić Contraction in Convex b-Metric Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

General New Results on (ϕ,F)Contractions in bMetric-like-Spaces

by
Kastriot Zoto
1,*,
Milanka Gardašević-Filipović
2,*,
Ilir Vardhami
3,
Zoran Mitrović
4 and
Stojan Radenović
5
1
Department of Mathematics and Computer Sciences, Faculty of Natural Sciences, University of Gjirokastra, 6001 Gjirokastra, Albania
2
School of Computing, Union University, 11000 Belgrade, Serbia
3
Department of Mathematics, Faculty of Natural Sciences, University of Tirana, 1010 Tirana, Albania
4
Faculty of Electrical Engineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina
5
Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd, Serbia
*
Authors to whom correspondence should be addressed.
Axioms 2023, 12(7), 672; https://doi.org/10.3390/axioms12070672
Submission received: 13 May 2023 / Revised: 1 July 2023 / Accepted: 5 July 2023 / Published: 7 July 2023
(This article belongs to the Special Issue Fixed Point Theory and Its Related Topics IV)

Abstract

:
Thispaper recognizes a general approach related to recent fixed point results about the classes of interpolative and hybrid contractions in metric space and general metric spaces. Considering auxiliary functions, so called Wardowski functions, and a rich set of implicit relations, we introduce types of  ( α v q , ϕ , F ) contractions and  r order hybrid  ( α v q , ϕ , F ) contractions in the setting of  b metric-like spaces. They generate and simplify many forms of contractions widely used in the literature. The resulting theorems significantly extend, generalize, and unify an excellent work on fixed point theory.

1. Introduction

The theory of fixed point has been studiedfor a long time and the fundamental concept linked to this theory is the concept of Banach’s contraction [1]. It is well known for its simple nature and for being an applicable model forstudying the solutions of integral equations, differential equations, BVP problems, and many other problems in nonlinear analysis. Since then, many researchers have scientifically developed important extensions and generalized notions of metric space and the contractive map. Interesting scientific research is related to different abstract general metric settings and finding appropriate contractive conditions.
We emphasize some of the maingeneralizations that provide great developments to the fixed point theory, such as the concepts of  b metric [2,3] and  b metric-like [4]; many scientists have contributed to this theory with papers and essential results, and furthermore we can list references [5,6,7,8,9,10,11,12,13,14]. In 2012, Samet defined  α admissible mapping [15], and further triangular  α admissible mapping [16]. In the same year, Wardowski [17] established the notion of  F contraction by using an auxiliary function under some imposed conditions, and later in 2018 introduced the notion of  ( ϕ , F ) contraction [18]. The classes of  F contraction and  ( ϕ , F ) contraction, revisited simultaneously with  α admissible mapping, are still a main focus and have been considered in the literature widely, and many fixed point theorems have beenpresented in metric space, b metric and  b metric-like space (for short  b m.l.s), and other spaces. For a valuable work anddetails on these notions, see [19,20,21,22,23,24,25,26,27,28]. Later, Karapinar [29] came up with the notion of interpolative contraction, ongoing together with  r hybrid contractions, as defined by M. Sh. Shagari [30]. In this regard, and to become familiar with more accurate information, interested readers can browse references [31,32,33,34,35,36].
In the presented paper, the general types of  ( α v q , ϕ , F ) contractions and  r order hybrid  ( α v q , ϕ , F ) contractions are introduced, as a variant of Wardowski contractions and  α contractions in the setting of  b m.l.s. By using these classes of contractions, we set up general new results which expand, generalize, and unify the repertoire for fixedpoint results beyond the types of interpolative and hybrid contractions discussed so far.

2. Preliminaries

First, let us obtain an understanding of the preliminary base concepts and notations.
Definition 1 ([4]). 
Let  Y  be a nonempty set and a parameter  v 1 . A mapping  b : Y × Y [ 0 , + )  is called a  b metric-like if for all  κ , s , z Y ,  the following conditions are satisfied:
b ( κ , z ) = 0   implies   κ = z ; b ( κ , z ) = b ( z , κ ) ; b ( κ , z ) v [ b ( κ , s ) + b ( s , z ) ] .  
The pair  ( Y , b )  is called a  b metric-like space. (   b m.l.s for short).
Definition 2 ([4]). 
Let  ( Y , b )  be a  b m.l.s with parameter  v ,  and let  { κ n }  be any sequence in  Y  and  κ Y . Then, the following applies:
(a)
{ κ n }  converges to  κ , iff  lim n + b ( κ n , κ ) = b ( κ , κ ) ;
(b)
{ κ n }  is Cauchy sequence in   ( Y , b ) , iff   lim n , m + b ( κ n , κ m )  exists and is finite;
(c)
( Y , b )  is complete   b m.l.s, iff for every Cauchy sequence   { κ n }  in   Y , there exists   κ Y  such that   lim n , m + b ( κ n , κ m ) = lim n + b ( κ n , κ ) = b ( κ , κ ) .
Definition 3 ([4]). 
Let  ( Y , b )  be a  b m.l.s with parameter  v ,  and a function  f : Y Y . We say that the function  f  is continuous if for each sequence  { κ n } Y  the sequence  f κ n f κ  whenever  κ n κ  as  n + ,  that is, if  lim n + b ( κ n , κ ) = b ( κ , κ )  yields  lim n + b ( f κ n , f κ ) = b ( f κ , f κ ) .
In a  b m.l.s, it is remarked that if  lim n , m + b ( κ n , κ m ) = 0 , then the limit of the sequence  { κ n }  is unique if it exists.
Definition 4 ([15]). 
Let  Y  be a non-empty set. Let  f : Y Y  and  α : Y × Y R +  be given functions. We say that  f  is an  α  admissible mapping if  α ( κ , z ) 1  implies that  α ( f κ , f z ) 1  for all  κ , z Y .
Definition 5 ([10]). 
Let  ( Y , b )  be a  b m.l.s,  f : Y Y  and  α : Y × Y R +  be given mappings, and let  q 1  be an arbitrary constant. We can say that  f  is an  α v q admissible mapping if  α ( κ , z ) v q ,  which implies  min { α ( f κ , z ) , α ( z , f κ ) } v q  for all  κ , z Y .
For illustrative examples belonging to this category of  α v q admissible functions, one can search in references [7,10].
Definition 6. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1 f : Y Y α : Y × Y R + . Then, the function  f  satisfies  α v q admissible property; if a sequence  { κ n } Y  with  κ n κ Y  and  α ( κ n , κ n + 1 ) v q  and  α ( κ n + 1 , κ n ) v q ,  then there exists a subsequence  { κ n k }  of  { κ n }  with  α ( κ n k , κ ) v q  and  α ( κ , κ n k ) v q  for all  k 0  and  q 1 .
Definition 7. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1 f : Y Y α : Y × Y R + . Then, the function  f  fulfills the unique  α v q property, if for all  κ , z   ( κ z )  fixed points of  f , we have  α ( κ , z ) v q  where  q 1 .
Lemma 1 ([4]). 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1 , and suppose that  { κ n }  is convergent to  κ ,  and  b ( κ , κ ) = 0 . Then, for each  z Y , we have
v 1 b ( κ , z ) lim inf   n + b ( κ n , z ) lim sup   n + b ( κ n , z ) v b ( κ , z ) .  
Lemma 2 ([7]). 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1 . Then, the following applies:
(a)
b ( κ , z ) = 0 ,  implies   b ( κ , κ ) = b ( z , z ) = 0 ;
(b)
If for  { κ n } Y ,   lim n + b ( κ n , κ n + 1 ) = 0 , then we have   lim n + b ( κ n , κ n ) = lim n + b ( κ n + 1 , κ n + 1 ) = 0 ;
(c)
κ z  implies   b ( κ , z ) > 0 .
Lemma 3 ([9]). 
Let  { κ n }  be a sequence in a complete  b –m.l.s  ( Y , b )  with parameter  v 1 , such that
lim n + b ( κ n , κ n + 1 ) = 0 .
If  lim n , m + b ( κ n , κ m ) 0 , then there exists  ε > 0  and sequences  { m ( k ) } k = 1  and  { n ( k ) } k = 1  of natural numbers with  n k > m k > k ,  (positive integers) such that  b ( κ m k , κ n k ) ε ,   b ( κ m k , κ n k 1 ) < ε ,   ε / v 2 lim sup   k + b ( κ m k 1 , κ n k 1 ) ε v ,   ε / v lim sup   k + b ( κ n k 1 , κ m k ) ε v 2  and  ε / v lim sup   k + b ( κ m k 1 , κ n k ) ε v 2 .

3. Results

In this section, we introduce the new notion of general types of  ( α v q , ϕ , F ) contractions in the setting of  b m.l.s that can be seen as a new form of linear and nonlinear contractions involving classical contractions, Wardowski type  F contractions, and interpolative and hybrid contractions.
Before proposing our definitions and theorems, we will use these formal notations:
  • F = { F : ( 0 , + ) R / F i s   c o n t i n u o u s a n d s t r i c t l y i n c r e a s i n g } ,
  • Θ = { ϕ : ( 0 , + ) ( 0 , + ) , s a t i s f y i n g c o n d i t i o n : lim inf   m + ϕ ( m ) > 0 f o r   a l l > 0 } ,
  • Ω n  is the set of all continuous functions  Γ : [ 0 , ) n [ 0 , )  where  n 2 , satisfying the conditions:
    Γ  is non-decreasing withrespect to each variable;
    Γ ( u , u , u , , u ) u  for  u [ 0 , + ) .
Definition 8. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . The self-mapping  f  on  Y ,  is named a generalized  ( α v q , ϕ , F ) contraction, if there exist  F F ,   ϕ Θ  such that
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( L ( κ , z ) )  
for all   κ , z Y  with   f κ f z  and   α ( κ , z ) v q ;
where   L ( κ , z ) = Γ ( b ( κ , z ) , b ( κ , f κ ) , b ( z , f z ) , b ( κ , f z ) + b ( z , f κ ) 4 v )  for some   Γ Ω 4 .
Remark 1. 
Some specific evidence of this definition ispointed out: aking the function  ϕ Θ  as constant function, we derived a generalized  ( α v q , F ) contraction. his definition extends and generalizes some definitions in [6,7,18,19,25,35]. By taking the function  ϕ : ( 0 , + ) ( 0 , + )  as a constant function or  α ( κ , z ) = v q ,  we can obtain other new definitions in the same metric structure. Also, this definition respectively holds validity in metric settings where  v = 1 ,  obtaining: Generalized  ( α , ϕ , F ) ,  ( α , F ) contractions.
Theorem 1. 
Let  ( Y , b )  be a complete  b m.l.s with parameter  v 1  and a self-mapping  f : Y Y  satisfying the conditions:
C1 
there exists   κ 0 Y  with   α ( κ 0 , f κ 0 ) v q ;
C2 
f  is   α v q admissible mapping and satisfies   α v q admissible property;
C3 
f  is a generalized   ( α v q , ϕ , F ) contraction.
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
Since C1 is satisfied,  κ 0 Y  exists such that  α ( κ 0 , f κ 0 ) v q . We construct the sequence  { κ n }  via aniterative equation  κ n + 1 = f ( κ n )  for all  n N { 0 } . Then,  α ( κ 0 , κ 1 ) = α ( κ 0 , f κ 0 ) v q  and since  f  is  α v q admissible it follows  α ( κ 1 , κ 2 ) = α ( κ 1 , f κ 1 ) v q , so inductively it can be concluded that  α ( κ n , κ n + 1 ) = α ( κ n , f κ n ) v q . Now, if we suppose that  n 0 N  exists with  f κ n 0 1 = f κ n 0 , then the proof is completed. Therefore, we assume  f κ n f κ n 1  for all  n N { 0 } . (it means  b ( f κ n , f κ n 1 ) > 0 ). Applying inequality (1) and property of  F , we have
ϕ ( b ( κ n 1 , κ n ) ) + F ( α ( κ n 1 , κ n ) b ( κ n , κ n + 1 ) ) = ϕ ( b ( κ n 1 , κ n ) ) + F ( α ( κ n 1 , κ n ) b ( f λ n 1 , f λ n ) ) F ( L ( κ n 1 , κ n ) ) ϕ ( b ( κ n 1 , κ n ) ) + F ( v q b ( κ n , κ n + 1 ) ) F ( L ( κ n 1 , κ n ) ) ,
where
L ( κ n 1 , κ n ) = Γ ( b ( κ n 1 , κ n ) , b ( κ n 1 , f κ n 1 ) , b ( κ n , f κ n ) , b ( κ n 1 , f κ n ) + b ( κ n , f κ n 1 ) 4 v ) = Γ ( b ( κ n 1 , κ n ) , b ( κ n 1 , κ n ) , b ( κ n , κ n + 1 ) , b ( κ n 1 , κ n + 1 ) + b ( κ n , κ n ) 4 v ) Γ ( b ( κ n 1 , κ n ) , b ( κ n 1 , κ n ) , b ( κ n , κ n + 1 ) , v b ( κ n 1 , κ n ) + v b ( κ n , κ n + 1 ) + 2 v b ( κ n 1 , κ n ) 4 v ) = Γ ( b ( κ n 1 , κ n ) , b ( κ n 1 , κ n ) , b ( κ n , κ n + 1 ) , v b ( κ n , κ n + 1 ) + 3 v b ( κ n 1 , κ n ) 4 v ) .
If we assume that  b ( κ n 1 , κ n ) b ( κ n , κ n + 1 ) , then
L ( κ n 1 , κ n ) = Γ ( b ( κ n 1 , κ n ) , b ( κ n 1 , κ n ) , b ( κ n , κ n + 1 ) , v b ( κ n , κ n + 1 ) + 3 v b ( κ n 1 , κ n ) 4 v ) Γ ( b ( κ n , κ n + 1 ) , b ( κ n , κ n + 1 ) , b ( κ n , κ n + 1 ) , b ( κ n , κ n + 1 ) ) b ( κ n , κ n + 1 ) .
And, from inequality (2), it follows that
ϕ ( b ( κ n 1 , κ n ) ) + F ( v q b ( κ n , κ n + 1 ) ) F ( L ( κ n 1 , κ n ) ) F ( b ( κ n , κ n + 1 ) ) .
The inequality (3) generates
F ( v q b ( κ n , κ n + 1 ) ) F ( b ( κ n , κ n + 1 ) ) ϕ ( b ( κ n 1 , κ n ) ) < F ( b ( κ n , κ n + 1 ) ) ,
which is a contradiction. Therefore, we have for all  n N :
b ( κ n , κ n + 1 ) < b ( κ n 1 , κ n ) .
Hence,  { b ( κ n , κ n + 1 ) }  is a decreasing sequence of nonnegative numbers. So, there exists  δ 0  such that  b ( κ n , κ n + 1 ) δ  as  n + . If we suppose that  δ > 0 , then using (5) and the property of  F , Equation (3) can be written as
ϕ ( b ( κ n 1 , κ n ) ) + F ( v q b ( κ n , κ n + 1 ) ) F ( b ( κ n 1 , κ n ) ) .
If we take the limit along (6) as  n + , then
lim inf   n + ϕ ( b ( κ n 1 , κ n ) ) + F ( v q δ ) F ( δ ) ,
which is a contradiction. Thus, we state that  δ = 0 .
Hence,
0 = lim n + b ( κ n , κ n + 1 ) .
Next, we show that  lim n , m + b ( κ n , κ m ) = 0 . Then, we suppose the contrary, that is, lim n , m + b ( κ n , κ m ) > 0 . Then, according to Lemma 3,  ε > 0  exists, as well as sequences  { m k }  and  { n k }  of positive integers with  n k > m k > k ,  such that
b ( κ m k , κ n k ) ε , b ( κ m k , κ n k 1 ) < ε ,   and   ε / v 2 lim sup   k + b ( κ m k 1 , κ n k 1 ) ε v , ε / v lim sup   k + b ( κ n k 1 , κ m k ) ε v ,   ε / v lim sup   k + b ( κ m k 1 , κ n k ) ε v 2 .
Since  0 < ε b ( κ m k , κ n k ) = b ( f κ m k 1 , f κ n k 1 ) , we apply condition (1) as
ϕ ( b ( κ m k 1 , κ n k 1 ) ) + F ( v q b ( κ m k , κ n k ) ) = ϕ ( b ( κ m k 1 , κ n k 1 ) ) + F ( v q b ( f κ m k 1 , f κ n k 1 ) ) ϕ ( b ( κ m k 1 , κ n k 1 ) ) + F ( α ( κ m k 1 , κ n k 1 ) b ( f κ m k 1 , f κ n k 1 ) ) F ( L ( κ m k 1 , κ n k 1 ) )
where
L ( κ m k 1 , κ n k 1 ) = Γ ( b ( κ m k 1 , κ n k 1 ) , b ( κ m k 1 , f κ m k 1 ) , b ( κ n k 1 , f κ n k 1 ) , b ( κ m k 1 , f κ n k 1 ) + b ( κ n k 1 , f κ m k 1 ) 4 v ) = Γ ( b ( κ m k 1 , κ n k 1 ) , b ( κ m k 1 , κ m k ) , b ( κ n k 1 , κ n k ) , b ( κ m k 1 , κ n k ) + b ( κ n k 1 , κ m k ) 4 v ) .
By taking the limit superior in Equation (10) and using Lemma 3, and result (7), we obtain
lim sup   n + L ( ( κ m k 1 , κ n k 1 ) ) = = lim sup   n + Γ ( b ( κ m k 1 , κ n k 1 ) , b ( κ m k 1 , κ m k ) , b ( κ n k 1 , κ n k ) , b ( κ m k 1 , κ n k ) + b ( κ n k 1 , κ m k ) 4 v ) = Γ ( lim sup   n + b ( κ m k 1 , κ n k 1 ) , lim sup   n + b ( κ m k 1 , κ m k ) , lim sup   n + b ( κ n k 1 , κ n k ) , lim sup   n + b ( κ m k 1 , κ n k ) + lim sup   n + b ( κ n k 1 , κ m k ) 4 v ) Γ ( ε v , 0 , 0 , ε + ε v 2 4 v ) Γ ( ε v , 0 , 0 , ε v 2 ) ε v .
Taking the upper limit as  k +  along (9) and using (11), we have
lim inf   n + ϕ ( b ( κ m k , κ n k ) ) + F ( v q ε ) lim inf   n + ϕ ( b ( κ m k , κ n k ) ) + F ( lim sup   n + v q b ( κ m k , κ n k ) ) F ( lim sup   n + L ( ( κ m k 1 , κ n k 1 ) ) ) F ( ε v ) .
Hence, the acquired inequality
lim inf   n + ϕ ( b ( κ m k , κ n k ) ) + F ( ε v q ) < F ( ε v ) ,
is a contradiction since  ε > 0  and  lim inf   n + ϕ ( b ( κ m k , κ n k ) ) > 0 . Thus,
lim n , m + b ( κ n , κ m ) = 0 .
Hence,  { κ n }  is a Cauchy sequence in  ( Y , b ) . Since it is complete, there is some  κ Y , such that the sequence  { κ n }  is convergent to  κ . Thus, according to def 2/(c) and (13), we have
lim n + b ( κ n , κ ) = lim n , m + b ( κ n , κ m ) = b ( κ , κ ) = 0 .
Since  f  satisfies the  α v q admissible property, there exists a subsequence  { κ n k }  of  { κ n }  such that  α ( κ n k , κ ) v q  for all  k 0 . Again, by using (1) and the property of  F , we have
ϕ ( b ( κ n k , κ ) ) + F ( v q b ( κ n k + 1 , f κ ) ) = ϕ ( b ( κ n k , κ ) ) + F ( v q b ( f κ n k , f κ ) ) ϕ ( b ( κ n k , κ ) ) + F ( α ( κ n k , κ ) b ( f κ n k , f κ ) ) F ( L ( κ n k , κ ) ) ,
where
L ( κ n k , κ ) = Γ ( b ( κ n k , κ ) , b ( κ n k , f κ n k ) , b ( κ , f κ ) , b ( κ n k , f κ ) + b ( κ , f κ n k ) 4 v ) = Γ ( b ( κ n k , κ ) , b ( κ n k , κ n k + 1 ) , b ( κ , f κ ) , b ( κ n k , f κ ) + b ( κ , κ n k + 1 ) 4 v ) .
Taking the limit superior as  k + , in  L ( κ n k , κ )  and in view of Lemma 1, we obtain
lim sup   k + L ( κ n k , κ ) = = lim sup   k + Γ ( b ( κ n k , κ ) , b ( κ n k , f κ n k ) , b ( κ , f κ ) , b ( κ n k , f κ ) + b ( κ , f κ n k ) 4 v ) = Γ ( lim sup   k + b ( κ n k , κ ) , lim sup   k + b ( κ n k , κ n k + 1 ) , lim sup   k + b ( κ , f κ ) , lim sup   k + b ( κ n k , f κ ) + lim sup   k + b ( κ , f κ n k ) 4 v ) Γ ( 0 , 0 , b ( κ , f κ ) , v b ( κ , f κ ) + 0 4 v ) b ( κ , f κ ) .
Again, taking the upper limit as  k +  in (15), and according to Lemma 1, the result (17) and property of  F , it follows that
lim inf   k + ϕ ( b ( κ n k , κ ) ) + F ( v q 1 b ( κ , f κ ) ) F ( b ( κ , f κ ) ) .
Hence, since  q 1 , the inequality (18) implies that  b ( κ , f κ ) = 0  and so  f κ = κ . Therefore, κ  is a fixed point for which
b ( κ , f κ ) = 0 = b ( κ , κ ) . .
If we suppose that  κ  and  s  are two fixed points of  f  where  f κ = κ  and  f s = s  with  κ s , that is  f κ f s . , then using (19) and the property of  Γ Ω 4 , for  L ( κ , s ) , we have
L ( κ , s ) = Γ ( b ( κ , s ) , b ( κ , f κ ) , b ( s , f s ) , b ( κ , f s ) + b ( s , f κ ) 4 v ) Γ ( b ( κ , s ) , b ( κ , κ ) , b ( s , s ) , b ( κ , s ) + b ( s , κ ) 4 v ) = Γ ( b ( κ , s ) , b ( κ , κ ) , b ( s , s ) , b ( κ , s ) 2 v ) = Γ ( b ( κ , s ) , 0 , 0 , b ( κ , s ) 2 v ) Γ ( b ( κ , s ) , b ( κ , s ) , b ( κ , s ) , b ( κ , s ) ) b ( κ , s ) .
Since,  f  satisfies the  α v q unique property, then  α ( κ , s ) v q , and from condition (1) and the above inequality, we have
ϕ ( κ , s ) + F ( α ( κ , s ) b ( f κ , f s ) ) F ( L ( κ , s ) ) F ( b ( κ , s ) ) .
ϕ ( κ , s ) + F ( v q b ( κ , s ) ) F ( b ( κ , s ) )
and (21) leads to a contradiction that implies  b ( κ , s ) = 0 . Therefore,  κ = s . □
Corollary 1. 
Let ( Y , b )  be a  b m.l.s with parameter  v 1  and the mappings  f : Y Y , α : Y × Y [ 0 , + ) . If there exist  F F ,   τ > 0  such that fulfill the condition  C 1 , C 2  and
τ + F ( α ( κ , z ) b ( f κ , f z ) ) F ( L ( κ , z ) )
for all  κ , z Y  with f κ f z  and α κ , z v q ;  where  L ( κ , z ) = Γ ( b ( κ , z ) , b ( κ , f κ ) , b ( z , f z ) , b ( κ , f z ) + b ( z , f κ ) 4 v )  for  Γ Ω 4 .
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
Take the function  ϕ : ( 0 , + ) ( 0 , + )  as constant  ϕ ( t ) = τ > 0 . □
Example 1. 
Let ( Y , b )  be a complete  b m.l.s with a coefficient  v = 2 ,  where  Y = [ 0 , + ) ,  b : Y × Y [ 0 , + )  with  b ( κ , z ) = ( κ + z ) 2  for all  κ , z Y . Consider the maps:  f : Y Y ,  α : Y × Y [ 0 , + ) , respectively, given by
f y = { κ 8 i f κ [ 0 , 1 ) 1 10 i f κ [ 1 , + ) ; α ( κ , z ) = { v 2 i f κ , z [ 0 , 1 ] 0 o t h e r w i s e .
For  κ , z Y  with  α ( κ , z ) 4 = v 2 f κ , f z [ 0 , 1 8 ]  and  α ( f κ , f z ) v 2 , that is,  f  is  α v q admissible mapping. Consider  F F  as  F ( t ) = t ϕ Θ  as  ϕ ( t ) = 1 16 t , and  Γ Ω 4  as  Γ ( u 1 , u 2 , u 3 , u 4 ) = max { u 1 , u 2 , u 3 , u 4 } , and then in the case of  κ , z [ 0 , 1 ) , we have
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) = = ϕ ( b ( κ , z ) ) + F ( v 2 b ( f κ , f z ) ) = ϕ ( b ( κ , z ) ) + F ( v 2 b ( κ 8 , z 8 ) ) = ϕ ( b ( κ , z ) ) + F ( 4 ( κ + z 8 ) 2 ) = ϕ ( b ( κ , z ) ) + F ( 1 16 b ( κ , z ) ) = 1 16 ( b ( κ , z ) ) + 1 16 ( b ( κ , z ) ) = 1 8 ( b ( κ , z ) ) F ( b ( κ , z ) ) F ( L ( κ , z ) ) .
In the case of  κ [ 0 , 1 )  and  z = 1 , we have
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) = = ϕ ( b ( κ , z ) ) + F ( v 2 b ( f κ , f z ) ) = ϕ ( b ( κ , 1 ) ) + F ( v 2 b ( κ 8 , 1 10 ) ) = ϕ ( b ( κ , 1 ) ) + F ( 4 ( κ 8 + 1 10 ) 2 ) = ϕ ( b ( κ , 1 ) ) + F ( 4 ( κ + 1 8 ) 2 ) = ϕ ( b ( κ , 1 ) ) + F ( 1 16 b ( κ , 1 ) ) = 1 16 ( b ( κ , 1 ) ) + 1 16 ( b ( κ , 1 ) ) = 1 8 ( b ( κ , 1 ) ) F ( b ( κ , 1 ) ) F ( L ( κ , 1 ) ) F ( L ( κ , z ) ) .
Obviously, the conditions of Theorem 1 are confirmed and  f  has  y = 0  as a unique fixed point. Already, this theorem is not applicable in the frame of metric space and  b metric space, as we can see from the additional dates.
For  z = 1 , κ = 99 / 100  using the usual metric  b ( κ , z ) = | κ z | (and  v = 1 , ), and taking  Γ ( u 1 , u 2 , u 3 , u 4 ) = u 1 , any increasing function  F F , and any function  ϕ Θ , we have
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) = = ϕ ( b ( κ , z ) ) + F ( b ( f κ , f z ) ) = ϕ ( b ( 99 100 , 1 ) ) + F ( b ( 99 800 , 1 10 ) ) = ϕ ( 1 100 ) + F ( 19 800 ) > F ( 1 100 ) = F ( b ( 99 100 , 1 ) ) = F ( b ( κ , z ) ) = F ( L ( κ , z ) ) .
Hence, we can say that the  ( α , ϕ , F )  and  ( α v q , ϕ , F ) contractive condition is not satisfied. Also, we can remark the same in a b-metric space with b-metric  b ( κ , z ) = | κ z | 2  where
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) = = ϕ ( b ( κ , z ) ) + F ( 2 2 b ( f κ , f z ) ) = ϕ ( b ( κ , z ) ) + F ( 4 b ( 99 800 , 1 10 ) ) = ϕ ( b ( κ , z ) ) + F ( 4 ( 19 800 ) 2 ) > F ( ( 1 10000 ) 2 ) = F ( b ( 99 100 , 1 ) ) = F ( b ( κ , z ) ) = F ( L ( κ , z ) ) .
Corollary 2. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and a self-mapping  f : Y Y .  If there exist  F F ,   ϕ Θ  such that
ϕ ( b ( κ , z ) ) + F ( v q b ( f κ , f z ) ) F ( L ( κ , z ) ) .
for all   κ , z Y  with  f κ f z , and some  q 1 , where  L ( κ , z ) = Γ ( b ( κ , z ) , b ( κ , f κ ) , b ( z , f z ) , b ( κ , f z ) + b ( z , f κ ) 4 v )  for some  Γ Ω 4 .
Then,  f  has a unique fixed point in  Y .
Proof. 
Take the function  α ( κ , z ) = v q .
In the following theorem, we will use another function to help cover rational expressions in the set  L ( κ , z ) .
Theorem 2. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . If there exist  F F , ϕ Θ  such that the following conditions are met:
C1 
There exists   κ 0 Y  with  α ( κ 0 , f κ 0 ) v q ;
C2 
f  is  α v q  admissible mapping and satisfies  α v q  admissible property;
C3 
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( L ψ ( κ , z ) )
for all   κ , z Y  with  f κ f z  and  α ( κ , z ) v q , where  L ψ ( κ , z ) = Γ ( b ( κ , z ) , b ( κ , f κ ) , b ( z , f z ) ψ ( b ( κ , f κ ) , b ( κ , z ) , b ( κ , f z ) + b ( z , f κ ) 4 v )  for some  Γ Ω 4 , and  ψ : [ 0 , + ) 2 [ 0 , + )  is a continuous function with  ψ ( m , m ) 1 ,  for all  m > 0 . Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
Repeating the same process as in the previous theorem, for  κ 0 Y  with  α ( κ 0 , f κ 0 ) v q ; build the iterative sequence  { κ n }  by  κ n + 1 = f ( κ n )  such that  α ( κ n , κ n + 1 ) v q  for all  n N { 0 } .  The proof is clear in the case that  n 0 N  exists, with  κ n 0 + 1 = κ n 0 .Assuming that  κ n + 1 κ n f κ n f κ n 1  for all  n N { 0 } ,  taking into account (1) for  κ = κ n 1 , z = κ n , we have
ϕ ( b ( κ n 1 , κ n ) ) + F ( v q b ( κ n , κ n + 1 ) ) ϕ ( b ( κ n 1 , κ n ) ) + F ( α ( κ n 1 , κ n ) b ( f κ n 1 , f κ n ) ) F ( L ψ ( κ n 1 , κ n ) ) ,
where
L ψ ( κ n 1 , κ n ) = Γ ( b ( κ n 1 , κ n ) , b ( κ n 1 , f κ n 1 ) , b ( κ n , f κ n ) ψ ( b ( κ n 1 , κ n ) , b ( κ n 1 , f κ n 1 ) ) , b ( κ n 1 , f κ n ) + b ( κ n , f κ n 1 ) 4 v ) = Γ ( b ( κ n 1 , κ n ) , b ( κ n 1 , κ n ) , b ( κ n , κ n + 1 ) ψ ( b ( κ n 1 , κ n ) , b ( κ n 1 , κ n ) ) , b ( κ n 1 , κ n + 1 ) + b ( κ n , κ n ) 4 v ) Γ ( b ( κ n 1 , κ n ) , b ( κ n 1 , κ n ) , b ( κ n , κ n + 1 ) , b ( κ n 1 , κ n + 1 ) + b ( κ n , κ n ) 4 v ) = L ( κ n 1 , κ n ) .
The result is the same as in Theorem 1, and the proof goes along the same lines.□
Corollary 3. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ , Γ Ω 4  such that satisfy theconditions  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( Γ { b ( κ , z ) , b ( κ , f κ ) , b ( z , f z ) b ( z , f z ) [ 1 + b ( κ , f κ ) ] 1 + b ( κ , z ) , b ( κ , f z ) + b ( z , f κ ) 4 v } )
for all  κ , z Y  with  f κ f z  and  α ( κ , z ) v q .
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
This comes from Theorem 2 by taking  ψ ( m , n ) = 1 + n 1 + m .
Corollary 4. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y , α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ  such that satisfy the conditions  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( max ( b ( κ , z ) , b ( κ , f κ ) , b ( z , f z ) , b ( κ , f z ) + b ( z , f κ ) 4 v ) )  
for all  κ , z Y  with  f κ f z  and  α ( κ , z ) v q .
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
The proof is consideredcompletedwhenthe substitution in Corollary 3 with  Γ Ω 4  as  Γ ( u 1 , u 2 , u 3 , u 4 ) = max { u 1 , u 2 , u 3 , u 4 }  is made.□
Corollary 5. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ  such that satisfy the conditions  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( a 1 b ( κ , z ) + a 2 b ( κ , f κ ) + a 3 b ( z , f z ) + a 4 b ( κ , f z ) + b ( z , f κ ) 4 v )
for all  κ , z Y  with  f κ f z  and  α ( κ , z ) v q .
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
This comes from Theorem 1 by taking  Γ Ω 4  as  Γ ( u 1 , u 2 , u 3 , u 4 ) = c 1 u 1 + c 2 u 2 + c 3 u 3 + c 4 u 4  with  0 < c 1 + c 2 + c 3 + c 4 < 1 . □
Corollary 6. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ  such that satisfy the conditions  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( max { b ( κ , z ) , b ( z , f z ) [ 1 + b ( κ , f k ) ] 1 + b ( κ , z ) } )
for all  κ , z Y  with  f κ f z  and  α ( κ , z ) v q .
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
The proof is completed by taking  Γ Ω 4  as  Γ ( u 1 , u 2 , u 3 , u 4 ) = max { u 1 , u 3 }  and the function  ψ ( m , n ) = 1 + n 1 + m  in Theorem 2.□
Corollary 7. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ  such that satisfy the condition  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( a 1 b ( κ , z ) + a 2 b ( z , f z ) [ 1 + b ( κ , f κ ) ] 1 + b ( κ , z ) )
for all  κ , z Y  with  f κ f z  and  α ( κ , z ) v q .
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
It comes from Theorem 2 by taking  Γ Ω 4  as  Γ ( u 1 , u 2 , u 3 , u 4 ) = a 1 u 1 + a 2 u 3  with
0 < a 1 + a 2 < 1 ,  and the function  ψ ( m , n ) = 1 + n 1 + m .
Remark 2. 
The above corollaries 6; 7 correspond to the  ( α v q , ϕ , F ) Dass-Gupta and Jaggi contractions. They are the generalization and extension of the theorems in [6,10,35,36,37].
In the following part, we generalize some previous definitions that have to do with interpolation and hybrid contractions in metric and generalized metric spaces. The theorems established for these classes of contractions, in the sequel and in the published literature, are a common important focus of Theorems 1 and 2.
Definition 9. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . The self-mapping  f  on  Y ,  is named aHardy–Rogers type interpolative  ( α v q , ϕ , F ) contraction, if there exist  F F ,   ϕ Θ  and  a 1 , a 2 , a 3 , a 4 ( 0 , 1 )  with  0 < a 1 + a 2 + a 3 + a 4 = 1 ,  such that
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( L a ( κ , z ) )
for all   κ , z Y \ F i x ( f ) with   f κ f z and   α ( κ , z ) v q , where
L a ( κ , z ) = ( b ( κ , z ) ) a 1 ( b ( κ , f κ ) ) a 2 ( b ( z , f z ) ) a 3 ( b ( κ , f z ) + b ( z , f κ ) 4 v ) a 4
Definition 10. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . The self-mapping  f  on  Y ,  is named a Hardy–Rogers  r order hybrid  ( α v q , ϕ , F ) contraction if there exist  F F ,   ϕ Θ  such that
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( L a r ( κ , z ) )
for all   κ , z Y \ F i x ( f )  with  f κ f z   α ( κ , z ) v q ,   r 0  and   a i 0 , i = 1 , 2 , 3 , 4  such that  0 < a 1 + a 2 + a 3 + a 4 = 1 ,  where
L a r ( κ , z ) = { [ a 1 ( b ( κ , z ) ) r + a 2 ( b ( κ , f κ ) ) r + a 3 ( b ( z , f z ) ) r + a 4 ( b ( κ , f z ) + b ( z , f κ ) 4 v ) r ] 1 r f o r r > 0 , κ z ( b ( κ , z ) ) a 1 ( b ( κ , f κ ) ) a 2 ( b ( z , f z ) ) a 3 ( b ( κ , f z ) + b ( z , f κ ) 4 v ) a 4 f o r r = 0 ; κ , z Y \ F i x ( f ) .  
Remark 3. 
Taking  v = 1 , consequently, we obtain the corresponding definitions in metric spaces. Taking  α ( κ , z ) v q ,  we derive the  r order hybrid  ( v , q , ϕ , F ) contraction. Taking  ϕ ( t ) = τ > 0 ,  we naturally obtain the  r order hybrid  ( α , F ) contraction. Definition 10 generates an  r  order interpolative  ( ϕ , F ) contraction and  r order  ( α , F ) contraction. The general Definition 8 generates the above Definitions 9 and 10, and all classical contractions for certain types of  Γ Ω 4  and all classical contractions. It integrates many new forms of contractions that have been recently defined.
Theorem 3. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . If  f  is an interpolative Hardy–Rogers type  ( α v q , ϕ , F ) contraction, and conditions  C 1 , C 2  hold, then  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
It is derived from Theorem 1 by taking  Γ Ω 4  as  Γ ( u 1 , u 2 , u 3 , u 4 ) = u 1 a 1 u 2 a 2 u 3 a 3 u 4 1 a 1 a 2 a 3 , where  a 1 , a 2 , a 3 ( 0 , 1 )  and  a 1 + a 2 + a 3 < 1 . □
Theorem 4. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1 , and  f : Y Y ,   α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ  such that satisfy the conditions  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( [ a 1 ( b ( κ , z ) ) r + a 2 ( b ( κ , f κ ) ) r + a 3 ( b ( z , f z ) ) r + a 4 ( b ( κ , f z ) + b ( z , f κ ) 4 v ) r ] 1 r )
for all  κ , z Y  with  f κ f z ,  α ( κ , z ) v q ,  and  r > 0 .
Then,  f  has a fixed point in  Y . Moreover, it is unique if  y  satisfies the unique  α v q property.
Proof. 
It comes from Theorem 1 by taking  Γ Ω 4  as  Γ ( u 1 , u 2 , u 3 , u 4 ) = [ a 1 u 1 r + a 2 u 2 r + a 3 u 3 r + a 4 u 4 r ] 1 r , r > 0 , where  0 < a 1 + a 2 + a 3 + a 4 < 1 . □
Theorem 5. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1  and  f : Y Y ,   α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ  such that hold conditions  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( [ max { ( b ( κ , z ) ) r , ( b ( κ , f κ ) ) r , ( b ( z , f z ) ) r , ( b ( κ , f z ) + b ( z , f κ ) 4 v ) r } ] 1 r )
for all  κ , z Y  with  f κ f z , α ( κ , z ) v q ,  and  r > 0 .
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
It is a special case of Theorem 1 when we take  Γ Ω 4  as
Γ ( u 1 , u 2 , u 3 , u 4 ) = [ max { u 1 r , u 2 r , u 3 r , u 4 r } ] 1 r , r > 0  
Theorem 6. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1 , and mappings  f : Y Y ,   α : Y × Y [ 0 , + ) , if the following conditions are satisfied:
C1 
There exists   κ 0 Y  with  α ( κ 0 , f κ 0 ) v q ;
C2 
f  is  α v q  admissible mapping and satisfies   α v q  admissible property;
C3 
f  is a generalized  r  order hybrid  ( α v q , ϕ , F ) contraction.
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
In Theorem 1, we define
L a r ( κ , z ) = { Γ 1 ( u 1 , u 2 , u 3 , u 4 ) f o r r > 0 , Γ 2 ( u 1 , u 2 , u 3 , u 4 ) f o r r = 0 .  
And, we take functions  Γ 1 , Γ 2 Ω 4  as  Γ 1 ( u 1 , u 2 , u 3 , u 4 ) = ( a 1 u 1 r + a 2 u 2 r + a 3 u 3 r + a 4 u 4 r ) 1 r Γ 2 ( u 1 , u 2 , u 3 , u 4 ) = u 1 a 1 u 2 a 2 u 3 a 3 u 4 a 4  where  a 1 , a 2 , a 3 , a 4 0  with  0 < a 1 + a 2 + a 3 + a 4 = 1 ,   r 0 .
Then,
L a r ( κ , z ) = { Γ 1 ( u 1 , u 2 , u 3 , u 4 ) = [ a 1 ( b ( κ , z ) ) r + a 2 ( b ( κ , f κ ) ) r + a 3 ( b ( z , f z ) ) r + a 4 ( b ( κ , f z ) + b ( z , f κ ) 4 v ) r ] 1 r f o r r > 0 Γ 2 ( u 1 , u 2 , u 3 , u 4 ) = ( b ( κ , z ) ) a 1 ( b ( κ , f κ ) ) a 2 ( b ( z , f z ) ) a 3 ( b ( κ , f z ) + b ( z , f κ ) 4 v ) a 4 f o r r = 0
Theorem 7. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1 ,  and  f : Y Y ,   α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ  such that satisfy the conditions  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( L a r ( κ , z ) )
for all   κ , z Y \ F i x ( f ) with   f κ f z   α ( κ , z ) v q ,   r 0  and  a i 0 , i = 1 , 2 , 3  such that  0 < a 1 + a 2 + a 3 = 1 ,  where
L a r ( κ , z ) = { [ a 1 ( b ( κ , z ) ) r + a 2 ( b ( κ , f κ ) ) r + a 3 ( b ( z , f z ) ) r ] 1 r f o r r > 0 , κ z ( b ( κ , z ) ) a 1 ( b ( κ , f κ ) ) a 2 ( b ( z , f z ) ) a 3 f o r r = 0 κ , z Y F i x ( f )  
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α v q property.
Proof. 
The proof is considered completed using Theorem 1, if we take  Γ 1 , Γ 2 Ω 4  and define
L a r ( κ , z ) = { Γ 1 ( u 1 , u 2 , u 3 , u 4 ) f o r r > 0 Γ 2 ( u 1 , u 2 , u 3 , u 4 ) f o r r = 0 ,
where
Γ 1 ( u 1 , u 2 , u 3 , u 4 ) = ( a 1 u 1 r + a 2 u 2 r + a 3 u 3 r ) 1 r Γ 2 ( u 1 , u 2 , u 3 , u 4 ) = ( u 1 ) a 1 ( u 2 ) a 2 ( u 3 ) a 3 .
Theorem 8. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1 , and  f : Y Y ,  α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ  such that satisfy the condition  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( L a r ( κ , z ) )
for all   κ , z Y \ F i x ( f )  with  f κ f z  and  α ( κ , z ) v q ,   r 0  and  a i 0 , i = 1 , 2  such that  0 < a 1 + a 2 = 1 , where
L a r ( κ , z ) = { [ a 1 ( b ( κ , z ) ) r + a 2 ( ( 1 + b ( κ , f κ ) ) b ( z , f z ) 1 + b ( κ , z ) ) r ] 1 r f o r r > 0 , κ z ( b ( κ , f κ ) ) a 1 ( b ( z , f z ) ) a 2 f o r r = 0 ; κ , z Y \ F i x ( f )  
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α s q property.
Proof. 
We take Theorem 2  ψ ( m , n ) = 1 + n 1 + m Γ 1 , Γ 2 Ω 4  and define
Γ a r ( κ , z ) = { Γ 1 ( u 1 , u 2 , u 3 , u 4 ) = a 1 u 1 r + a 2 u 3 r f o r r > 0 , Γ 2 ( u 1 , u 2 , u 3 , u 4 ) = ( u 2 ) a 1 ( u 3 ) a 2 f o r r = 0 .  
Remark 4. 
Theorem 8 can be considered as new result for Jaggi  r order hybrid  ( α v q , ϕ , F ) contractions and Dass and Gupta type  r order hybrid  ( α v q , ϕ , F ) contractions extended in  b m.l.s; they are also a special case of generalized  ( α v q , ϕ , F ) contractions.
Theorem 9. 
Let  ( Y , b )  be a  b m.l.s with parameter  v 1 , and  f : Y Y ,  α : Y × Y [ 0 , + ) . If there exist  F F ,   ϕ Θ  such that satisfy the condition  C 1 , C 2  and
ϕ ( b ( κ , z ) ) + F ( α ( κ , z ) b ( f κ , f z ) ) F ( L a r ( κ , z ) )
for all   κ , z Y \ F i x ( f )  with  f κ f z  and  α ( κ , z ) v q ,   r 0  and  a i 0 , i = 1 , 2 , 3 , 4  such that  0 < a 1 + a 2 + a 3 + a 4 = 1 , where
L a r ( κ , z ) = { [ max { ( b ( κ , z ) ) r , ( b ( κ , f κ ) ) r , ( b ( z , f z ) ) r , ( b ( κ , f z ) + b ( z , f κ ) 4 v ) r } ] 1 r f o r r > 0 , κ z ( b ( κ , z ) ) a 1 ( b ( κ , f κ ) ) a 2 ( b ( z , f z ) ) a 3 ( b ( κ , f z ) + b ( z , f κ ) 4 v ) a 4 f o r r = 0 ; κ , z Y \ F i x ( f )
Then,  f  has a fixed point in  Y . Moreover, it is unique if  f  satisfies the unique  α s q property.
Proof. 
We take Theorem 1 with the function  Γ 1 , Γ 2 Ω 4  and define
L a r ( κ , z ) = { Γ 1 ( u 1 , u 2 , u 3 , u 4 ) = [ max { u 1 r , u 2 r , u 3 r , u 4 r } ] 1 r f o r r > 0 , Γ 2 ( u 1 , u 2 , u 3 , u 4 ) = u 1 a 1 u 2 a 2 u 3 a 3 u 4 a 4 f o r r = 0
Remark 5. 
In Definition 9 and also Theorem 3
-
By taking  Γ ( u 1 , u 2 , u 3 , u 4 ) = c u 1 a 1 u 2 a 2 u 3 a 3 u 4 a 4  where  0 < c < 1 ,  a 1 , a 2 , a 3 , a 4 0  with  0 < a 1 + a 2 + a 3 + a 4 = 1 ,  and  v = 1  we obtain Definition 2 and, respectively, Theorem 4 in [31] in the  ( α v q , ϕ , F )  version; so, our result is an extension, generalization, and new result in the framework of metric and b-metric-like-spaces.
-
By taking  Γ ( u 1 , u 2 , u 3 , u 4 ) = λ u 1 a 1 u 2 a 2 u 3 a 3  where  0 < λ < 1 ,   a 1 , a 2 , a 3 0  with  0 < a 1 + a 2 + a 3 = 1 ,  and  v = 1 , we obtain Definition 3 and, respectively, Theorem 4 in [34] in the  ( α v q , ϕ , F )  version.
-
By taking  α ( y , z ) = v q ,  we obtain some theorems in [8].
-
By taking  Γ ( u 1 , u 2 , u 3 , u 4 ) = φ ( u 1 a 1 u 2 a 2 u 3 a 3 )  where  φ  is non decreasing function on  [ 0 , )  such that  n = 1 φ n ( t ) <  for  t > 0  and  φ ( t ) < t  for each  t > 0 , also  a 1 , a 2 , a 3 0  with  0 < a 1 + a 2 + a 3 = 1 ,   v = 1 , we obtain Definition 3 and, respectively, Theorem 1 in [32], in the  ( α v q , ϕ , F )  version.
-
In view of the implicit relation set  Ω n , our definitions and, respectively, the stated Theorems have a general character and unifying power.
-
The same consequences are present for Definition 10 and related theorems.

4. Conclusions

In this work, we established some new valuable and significant fixed point results in a general metric space like a  b m.l.s. Moreover, we used these results to obtain several interesting results related to linear and nonlinear contractions recently elaborated on under the name of interpolative contraction and  r hybrid  F contraction in such spaces. Our results extend, generalize, and significantly unify a great work on fixed point theory.

Author Contributions

K.Z., M.G.-F. and I.V. designed the research and wrote the paper. Z.M. and K.Z. wrote the draft preparation and provided the methodology. S.R. co-wrote and made revisions to the paper. M.G.-F. handled funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding

The research of the second author is partially supported by the Ministry of Education, Science and Technological Development, Republic of Serbia, as part of the project TR36002.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank the editor and the referees for their valuable comments and suggestions which have greatly improved the quality of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux equations integrals. Fundam. Mathmaticae 1992, 3, 133–181. [Google Scholar] [CrossRef]
  2. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
  3. Bakhtin, I. The contraction mapping principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
  4. Alghmandi, M.; Hussain, A.N.; Salimi, P. Fixed point and coupled fixed point theorems on b-metric-like spaces. J. Inequalities Appl. 2013, 2013, 402. [Google Scholar] [CrossRef] [Green Version]
  5. Latif, A.; Subaie, R.F.A.; Alansari, M.O. Fixed points of generalized multi-valued contractive mappings in metric type spaces. J. Nonlinear Var. Anal. 2022, 6, 123–138. [Google Scholar]
  6. Zoto, K.; Rhoades, B.E.; Radenovic, S. Common fixed point theorems for a class of (s, q)-contractive mappings in b-Metric-like spaces and applications to integral equations. Math. Slovaca 2019, 69, 233–247. [Google Scholar] [CrossRef]
  7. Zoto, K.; Rhoades, B.E.; Radenovic, S. Some generalizations for (α-ψ, φ) contractions in b-Metric-like spaces and application. Fixed Point Theory Appl. 2017, 2017, 26. [Google Scholar] [CrossRef] [Green Version]
  8. Zoto, K.; Vardhami, I.; Bajović, D.; Mitrović, Z.D.; Radenović, S. On Some Novel Fixed Point Results for Generalized-Contractions in b-Metric-Like Spaces with Application. Comput. Model. Eng. Sci. 2023, 135, 673–686. [Google Scholar] [CrossRef]
  9. Zoto, K.; Radenovic, S.; Ansari, H.A. On some fixed point results for (s, p, α)-contractive mappings in b- metric-like spaces and applications to integral equations. Open Math. 2018, 16, 235–249. [Google Scholar] [CrossRef] [Green Version]
  10. Hussain, N.; Zoto, K.; Radenovic, S. Common Fixed Point Results of (α-ψ, φ)-Contractions for a Pair of mappings and Applications. Mathematics 2018, 6, 182. [Google Scholar] [CrossRef] [Green Version]
  11. Zoto, K.; Aydi, H.; Alsamir, H. Generalizations of some contractions in b-metric-like spaces and applications to boundary value problems. Adv. Differ. Equ. 2021, 2021, 262. [Google Scholar] [CrossRef]
  12. Mitrović, Z.D.; Hussain, N. On weak quasicontractions in b-metric spaces. Publ. Math. Debrecen 2019, 94, 29. [Google Scholar] [CrossRef]
  13. Shukla, S. Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
  14. Mustafa, Z.; Roshan, J.R.; Parvanesh, V.; Kadelburg, Z. Some common fixed point results in ordered partial b-metric spaces. J. Inequal. Appl. 2014, 1, 562. [Google Scholar] [CrossRef] [Green Version]
  15. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. Theory Methods Appl. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
  16. Karapinar, E.; Kumam, P.; Salimi, P. On α-ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013, 94. [Google Scholar] [CrossRef] [Green Version]
  17. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2013, 94. [Google Scholar] [CrossRef] [Green Version]
  18. Wardowski, D. Solving existence problems via F-contractions. Proc. Am. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
  19. Cosentino, M.; Vetro, P. Fixed point result for F-contractive mappings of Hardy-Rogers—Type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef] [Green Version]
  20. Kadelburg, Z.; Radenović, S. Notes on some recent papers concerning F-contractions in b-metric spaces. Constr. Math. Anal. 2018, 1, 108–112. [Google Scholar] [CrossRef] [Green Version]
  21. Vetro, F. F-contractions of Hardy-Rogers-type and application to multistage decision. Nonlinear Anal. Model. Control 2016, 21, 531–546. [Google Scholar] [CrossRef] [Green Version]
  22. Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 1, 210. [Google Scholar] [CrossRef] [Green Version]
  23. Lukács, A.; Kajxaxntó, S. Fixed point results for various type F-contractions in complete b-metric spaces. Fixed Point Theory 2018, 19, 321–334. [Google Scholar] [CrossRef] [Green Version]
  24. Alsulami, H.H.; Karapinar, E.; Piri, H. Fixed points of generalized F-Suzuki type contraction in complete b-metric spaces. Discrete Dyn. Nat. Soc. 2015, 2015, 969726. [Google Scholar] [CrossRef] [Green Version]
  25. Huang, H.; Mitrović, Z.D.; Zoto, K.; Radenović, S. On Convex F-Contraction in b-Metric Spaces. Axioms 2021, 10, 71. [Google Scholar] [CrossRef]
  26. Fabiano, N.; Kadelburg, Z.; Mirkov, N.; Cavi´c, V.S.; Radenovi´c, S. On F-contractions: A Survey. Contamporary Math. 2022, 3, 327. [Google Scholar] [CrossRef]
  27. Anjum, A.S.; Aage, C. Common fixed point theorem in F-Metric Spaces. J. Adv. Math. Stud. 2022, 15, 357–365. [Google Scholar]
  28. Saluja, G.S. Some common fixed point theorems on—Metric spaces using simulation functions. J. Adv. Math. Stud. 2022, 15, 288–302. [Google Scholar]
  29. Karapinar, E. Revisiting the Kannan type contractions via interpolation. Adv. Theory Nonlinear Anal. Its Appl. 2018, 2, 85–87. [Google Scholar] [CrossRef] [Green Version]
  30. Shagari, M.; Shi, Q.S.; Rashid, S.; Foluke, U.I.; Khadijah, M.A. Fixed points of nonlinear contractions with applications. AIMS Math. 2021, 6, 9378–9396. [Google Scholar] [CrossRef]
  31. Karapınar, E.; Algahtani, O.; Aydi, H. On Interpolative Hardy-Rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef] [Green Version]
  32. Aydi, H.; Karapinar, E.; Roldán López de Hierro, A.F. ω-Interpolative Cirić-Reich-Rus-type contractions. Mathematics 2019, 7, 57. [Google Scholar] [CrossRef] [Green Version]
  33. Aydi, H.; Chen, C.M.; Karapınar, E. Interpolative Cirić-Reich-Rus- type contractions via the branciari distance. Mathematics 2019, 7, 84. [Google Scholar] [CrossRef] [Green Version]
  34. Karapinar, E.; Agarwal, R.; Aydi, H. Interpolative Cirić-Reich-Rus-type contractions on partial metric spaces. Mathematics 2019, 6, 256. [Google Scholar] [CrossRef] [Green Version]
  35. Zahi, O.; Ramoul, H. Fixed point theorems for (χ,F)-Dass–Gupta contraction mappings in b-metric spaces with applications to integral equations. Bol. Soc. Mat. Mex. 2022, 28, 40. [Google Scholar] [CrossRef]
  36. Dass, B.K.; Gupta, S. An extension of Banach contraction principle through rational expression. Indian J. Pure Appl. Math. 1975, 6, 1455–1458. [Google Scholar]
  37. Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zoto, K.; Gardašević-Filipović, M.; Vardhami, I.; Mitrović, Z.; Radenović, S. General New Results on (ϕ,F)Contractions in bMetric-like-Spaces. Axioms 2023, 12, 672. https://doi.org/10.3390/axioms12070672

AMA Style

Zoto K, Gardašević-Filipović M, Vardhami I, Mitrović Z, Radenović S. General New Results on (ϕ,F)Contractions in bMetric-like-Spaces. Axioms. 2023; 12(7):672. https://doi.org/10.3390/axioms12070672

Chicago/Turabian Style

Zoto, Kastriot, Milanka Gardašević-Filipović, Ilir Vardhami, Zoran Mitrović, and Stojan Radenović. 2023. "General New Results on (ϕ,F)Contractions in bMetric-like-Spaces" Axioms 12, no. 7: 672. https://doi.org/10.3390/axioms12070672

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop