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Abstract: In this paper, we prove some fixed point theorems in a b-metric-like space setting using a
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1. Introduction and Preliminaries

Recently, several authors investigated fixed point theorems in generalized metric spaces, such as
b-metric spaces, metric-like spaces, b-metric-like spaces, and so on, where “metric” d takes its
values in more generalized conditions. The advantage of this approach is that they bring us much
stronger applications. It is, among other things, shown by examples in the articles cited throughout
this manuscript.

Presently, the study of (ψ, ϕ)-contractions using the concept of α-admissible mapping in
b-metric-like spaces is the focus of many researchers. Later, many generalizations under (ψ− φ)-,
α− ψ-, and (α− ψ− φ)-contractive conditions was provided in many works. For fixed point theorems
related to these notions, see References [1–28].

In our work, following this direction, using the notion of α-admissible mapping, in the first part
of the paper, we proved some fixed point theorems for contractions of rational types, by means of
a function γ : R+ × R+ → R+ . In the second part, we introduce the notion of αsp -admissible pairs
of mappings and also a general and much wider class of (αsp − ψ, φ)-contractive pairs of mappings
where the framework was taken to be b-metric-like spaces. Various related fixed point theorems in the
recent literature can be derived using our results.

Definition 1 ([2]). Let M be a nonempty set and s ≥ 1 be a given real number. A mapping
d : M×M→ [0, ∞) is called a b-metric if for all t, r, z ∈ M, the following conditions are satisfied:

d(t, r) = 0 if and only if t = r;
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d(t, r) = d(r, t);
d(t, r) ≤ s[d(t, z) + d(z, r)].

The pair (M, d) is called a b-metric space with parameter s.
The following space was introduced and studied for the first time in 1985 by Matthews [1] under

the name “metric domains”. In 2000, Hitzler and Seda [3] called these spaces “dislocated metric spaces”.
In 2012, Amini-Harandi [4] rediscovered dislocated metric spaces under the name “metric-like spaces”.

Definition 2 ([4]). Let M be a nonempty set. A mapping σ : M×M→ [0, ∞) is called metric-like if for all
t, r, z ∈ M, the following conditions are satisfied:

σ(t, r) = 0 implies t = r;
σ(t, r) = σ(r, t);
σ(t, r) ≤ σ(t, z) + σ(z, r).

The pair (M, σ) is called a metric-like space.

Definition 3 ([5]). Let M be a nonempty set and s ≥ 1 be a given real number. A mapping
σb : M×M→ [0, ∞) is called b-metric-like if for all t, r, z ∈ M, the following conditions are satisfied:

σb(t, r) = 0 implies t = r;
σb(t, r) = σb(r, t);
σb(t, r) ≤ s[σb(t, z) + σb(z, r)].

The pair (M, σb) is called a b-metric-like space.
In a b-metric-like space (M, σb), if t, r ∈ M and σb(t, r) = 0, then t = r; however, the converse

need not be true, and σb(t, t) may be positive for t ∈ M.

Example 1 ([5]). Let M = R+ ∪ {0}. Define the function σb : M2 → [0, ∞) by σb(t, r) = (t + r)2 for all
t, r ∈ M. Then, (M, σb) is a b-metric-like space with parameter s = 2.

Definition 4 ([5]). Let (M, σb) be a b-metric-like space with parameter s, and let {tn} be any sequence in M
and t ∈ M. Then, the following applies:

(a) The sequence {tn} is said to be convergent to t if lim
n→∞

σb(tn, t) = σb(t, t);

(b) The sequence {tn} is said to be a Cauchy sequence in (M, σb) if lim
n,m→∞

σb(tn, tm) exists and is finite;

(c) The pair (M, σb) is called a complete b-metric-like space if, for every Cauchy sequence {tn} in M,
there exists t ∈ M such that lim

n,m→∞
σb(tn, tm) = lim

n→∞
σb(tn, t) = σb(t, t).

Preposition 1 ([5]). Let (M, σb) be a b-metric-like space with parameter s, and let {tn} be any sequence in M
with t ∈ M such that lim

n→∞
σb(tn, t) = 0. Then, the following applies:

(a) t is unique;
(b) s−1σb(t, r) ≤ lim

n→∞
σb(tn, r) ≤ sσb(t, r) for all r ∈ M.

In 2012, Samet et al. [6] introduced the class of α-admissible mappings.

Definition 5. Let M be a non-empty set, f a self-map on M, and α : M×M→ R+ a given function. We say
that f is an α-admissible mapping if α(t, r) ≥ 1 implies that α( f t, f r) ≥ 1 for all t, r ∈ M.

Definition 6 ([7]). Let (M, σb) be a b-metric-like space with parameter s ≥ 1, and let α : M×M→ R+

be a function, and arbitrary constants q, p such that q ≥ 1 and p ≥ 2. A self-mapping f : M→ M is
αqsp -admissible if α(t, r) ≥ qsp implies α( f t, f r) ≥ qsp, for all t, r ∈ M.
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Examples 3.3 and 3.4 in Reference [20] illustrate Definition 6.
Recently, Aydi et al. [8] generalized Definition 5 to a pair of mappings.

Definition 7. For a non-empty set M, let f , g : M→ M and α : M×M→ R+ be mappings. We say that
( f , g) is an α-admissible pair if for all t, r ∈ M, we have

α(t, r) ≥ 1⇒ α( f t, gr) ≥ 1 and α(gr, f t) ≥ 1.

Examples 1.13 and 1.14 in Reference [8] illustrate Definition 7.

Lemma 1 ([8]). Let (M, σb) be a b-metric-like space with parameter s ≥ 1. If a given mapping f : M→ M
is continuous at u ∈ M, then, for all sequences {tn} in M convergent to u, we have that the sequence f tn is
convergent to the point f u, that is

lim
n→∞

σb( f tn, f u) = σb( f u, f u).

Lemma 2 ([5]). Let (M, σb) be a b-metric-like space with parameter s ≥ 1, and suppose that {tn} and {rn} are
σb-convergent to t and r, respectively. Then we have

s−2σb(t, r)− s−1σb(t, t)− σb(r, r) ≤ liminf
n→∞

σb(tn, rn)

≤ limsup
n→∞

σb(tn, rn) ≤ sσb(t, t) + s2σb(r, r) + s2σb(t, r).

In particular, if σb(t, r) = 0, then we have lim
n→∞

σb(tn, rn) = 0.

Moreover, for each z ∈ M, we have

s−1σb(t, z)− σb(t, t) ≤ liminf
n→∞

σb(tn, z)

≤ limsup
n→∞

σb(tn, z) ≤ sσb(t, z) + sσb(t, t).

In particular, if σb(t, t) = 0, then

s−1σb(t, z) ≤ liminf
n→∞

σb(tn, z)

≤ limsup
n→∞

σb(tn, z) ≤ sσb(t, z).

The following result is useful.

Lemma 3 ([7]). Let (M, σb) be a b-metric-like space with parameter s ≥ 1. Then, the following applies:

(a) If σb(t, r) = 0, then σb(t, t) = σb(r, r) = 0;
(b) If {tn} is a sequence such that lim

n→∞
σb(tn, tn+1) = 0, then we have lim

n→∞
σb(tn, tn) = lim

n→∞
σb(tn+1, tn+1) = 0;

(c) If t 6= r, then σb(t, r) > 0.

Lemma 4. Let (M, σb) be complete b-metric-like space with parameter s ≥ 1, and let {tn} be a sequence
such that

lim
n→∞

σb(tn, tn+1) = 0. (1)

If for the sequence {tn} lim
n,m→∞

σb(tn, tm) 6= 0, then there exists ε > 0, and sequences {m(k)} and

{n(k)} of positive integers with nk > mk > k, such that

ε ≤ σb(t2nk , t2mk ) ≤ εs, ε/s ≤ limsup
k→∞

σb(t2mk , t2nk−1) ≤ εs,

ε/s2 ≤ limsup
k→∞

σb(t2nk−1, t2mk+1) ≤ εs2,
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ε/s ≤ limsup
k→∞

σb(t2mk+1, t2nk ) ≤ εs2.

Proof. Suppose that {t2n} is a sequence in (M, σb) satisfying (1) such that lim
n,m→∞

σb(t2n, t2m) 6= 0. Then,

there exists ε > 0, and sequences {m(k)}∞
k=1 and {n(k)}∞

k=1 of positive integers with nk > mk > k,
such that nk is smallest index for which

nk > mk > k, σb(t2nk , t2mk ) ≥ ε. (2)

This means that
σb(t2nk−2, t2mk ) < ε. (3)

Consider

ε ≤ σb(t2nk , t2mk ) ≤ sσb(t2nk , t2nk−2) + sσb(t2nk−2, t2mk )

≤ s2σb(t2nk , t2nk−1) + s2σb(t2nk−1, t2nk−2) + sσb(t2nk−2, t2mk ).
(4)

Hence, by (4), and (1)–(3), we have

limsup
k→∞

σb(t2nk , t2mk ) ≤ εs. (5)

Again, we consider

ε ≤ σb(t2mk , t2nk ) ≤ sσb(t2mk , t2nk−1) + sσb(t2nk−1, t2nk ). (6)

Taking the limit superior in (6), we get

limsup
k→∞

σb(t2mk , t2nk−1) ≥
ε

s
.

Also,
σb(t2mk , t2nk−1) ≤ sσb(t2mk , t2nk−2) + sσb(t2nk−2, t2nk−1). (7)

By (7), and in view of (1) and (3), we get

limsup
k→∞

σb(t2mk , t2nk−1) ≤ εs. (8)

As a result,
ε

s
≤ limsup

k→∞
σb(t2mk , t2nk−1) ≤ εs.

Again, we consider

ε ≤ σb(t2nk−1, t2mk+1) ≤ sσb(t2nk−1, t2nk−2) + sσb(t2nk−2, t2mk+1)

≤ sσb(t2nk−1, t2nk−2) + s2σb(t2nk−2, t2mk ) + s2σb(t2mk , t2mk+1).
(9)

By (9), we get
limsup

k→∞
σb(t2nk−1, t2mk+1) ≤ εs2. (10)

Also,
ε ≤ σb(t2nk , t2mk ) ≤ sσb(t2nk , t2nk−1) + sσb(t2nk−1, t2mk )

≤ sσb(t2nk , t2nk−1) + s2σb(t2nk−1, t2mk+1) + s2σb(t2mk+1, t2mk ).
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Letting k→ ∞ and using (1), we get

ε

s2 ≤ limsup
k→∞

σb(t2nk−1, t2mk+1). (11)

From (5) and (6), we have

ε

s2 ≤ limsup
k→∞

σb(t2nk−1, t2mk+1) ≤ εs2.

Consider
ε ≤ σb(t2nk , t2mk ) ≤ sσb(t2nk , t2mk+1) + sσb(t2mk+1, t2mk ).

Letting k→ ∞ and by (1), we obtain

ε

s
≤ lim

k→∞
sup σb(t2mk+1, t2nk ). (12)

From
σb(t2mk+1, t2nk ) ≤ sσb(t2mk+1, t2mk ) + sσb(t2mk , t2nk ),

using (1) and (5), we get
lim
k→∞

sup σb(t2mk+1, t2nk ) ≤ εs2,

and also
ε

s
≤ limsup

k→∞
σb(t2mk+1, t2nk ) ≤ εs2.

�

Lemma 5. Let {tn} be a sequence in a b-metric-like space (M, σb) with parameter s ≥ 1, such that
σb(tn, tn+1) ≤ λσb(tn−1, tn) for all n ∈ N, for some λ, where 0 ≤ λ < 1/s. Then, the following applies:
1. lim

n→∞
σb(tn, tn+1) = 0,

2. {tn} is a Cauchy sequence in (M, σb) and lim
n,m→∞

σb(tn, tm) = 0.

Proof. For the proof of the previous lemma, one can use the following clear inequalities:

σb(tn+1, tn+2) ≤ λσb(tn, tn+1) ≤ λ2σb(tn−1, tn) ≤ . . . ≤ λn+1σb(t0, t1),

and

σb(tm, tn) ≤ sσb(tm, tm+1) + s2σb(tm+1, tm+2) + . . . + sn−m−1σb(tn−2, tn−1) + sn−mσb(tn−1, tn),

where m, n ∈ N and n > m. �

2. Main Results

We start the main section with generalization of Definitions 5 and 6, introducing αsp -admissible
pairs of mappings and properties Hsp and Usp .

Definition 8. Let ( f , g) be a pair of self-mappings in a b-metric-like space (M, σb) with parameter s ≥ 1,
and α : M×M→ R+ be a given mapping, and some constant p with p ≥ 2. We say that ( f , g) is an
αsp -admissible pair if α(t, r) ≥ sp, implies min{α( f t, gr), α(gr, f t)} ≥ sp for all t, r ∈ M.

Remark 1.

• By choosings = 1 and g = f , we derive further consequences of Definition 8.
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• The function alpha is considered asymmetric.

Example 2. Let M = R and α : M×M→ R+ as α(t, r) = s2etr for all t, r ∈ M and s ≥ 1. Define the
self-mappings f , g on M by f t = t2 and gt = t4. Then, ( f , g) is an αsp -admissible pair, where p = 2.

Example 3. Let M = R and constants s ≥ 1, p = 2. Let α : M×M→ R+ and f , g : M→ M be defined by

α(t, r) =

{
s2 i f t, r ∈ [0, 1]
0 otherwise

, f t = t/3 and gt = t3.

Then, ( f , g) is an αsp -admissible pair.
In the sequel, in a complete b-metric-like space (M, σb), we consider useful properties below.
(Hsp ): If {tn} is a sequencein M such that tn → t ∈ M as n→ ∞ and α(tn, tn+1) ≥ sp and
α(tn+1, tn) ≥ sp, then there exists a subsequence

{
tnk

}
of {tn} such that α

(
tnk , t

)
≥ sp and

α
(
t, tnk

)
≥ sp for all k ∈ N.

(Usp ): For all t, r ∈ CF( f , g), we have α(t, r) ≥ sp, where CF( f , g) denotes the set of common
fixed points of f and g (also Fix( f ) is the set of fixed points of f ).

Now, we present some fixed point theorems for contractions of rational type in the setting of
b-metric-like spaces. These theorems generalize some results appearing in References [9,10] and others
in the literature.

According to Definition 3.1 in Reference [7], for q = 1, we obtain the following definition:

Definition 9. Let (M, σb) be a complete b-metric-like space with parameter s ≥ 1, and f : M→ M and
α : M×M→ R+ be given mappings. We say that f is a generalized αsp − k rational contractive mapping
(short (αsp − k, R) contraction) if there exists γ : R+ × R+ → R+ as a continuous function with γ(x, x) ≤ 1
and γ(x, 0) ≤ 1 for all x ∈ R+, which satisfy the following condition:

α(t, r)σb( f t, f r) ≤ kR(t, r), (13)

for all t, r ∈ M with α(t, r) ≥ sp, where

R(t, r) = max{σb(t, r), σb(r, f r)γ(σb(t, f t), σb(t, r))}.

Remark 2. If in Definition 9, we take α(t, r) = sp then we obtain a generalized (s− k, R) contraction.
Also other remarks can be taken for certain choices of the coefficients s and p.

Theorem 1. Let f be a continuous self-mapping in a complete b-metric-like space (M, σb) with coefficient s ≥ 1,
and α : M×M→ R+ a given function. If the following conditions are satisfied:

(i) f is an αsp -admissible mapping;
(ii) f is an (αsp − k, R) contractive mapping;
(iii) there exists an t0 ∈ M such that α(t0, f t0) ≥ sp.

Then, f has a fixed point.

Proof. By hypothesis (iii), we have t0 ∈ M satisfying α(t0, f t0) ≥ sp. With this t0 ∈ M as an initial
point, we define an iterative sequence {tn} in M by tn+1 = f tn for all n = 0, 1, 2, . . .. If σb(tn, tn+1) = 0
for some n, then tn = tn+1 = f tn and tn is a fixed point of f and the proof is done.

Hence, we assume that σb(tn, tn+1) > 0 (that is tn 6= tn+1) for all n.
From hypothesis (i), we get that

α(t0, t1) = α(t0, f t0) ≥ sp, α( f t0, f t1) = α(t1, t2) ≥ sp and α( f t1, f t2) = α(t2, t3) ≥ sp.
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On continuing this process, by induction, we get that

α(tn, tn+1) ≥ sp for all n.

Hence, applying Condition (13), we have

spσb(t1, t2) = spσb( f t0, f t1)

≤ α(t0, t1)σb( f t0, f t1)

≤ kR(t0, t1),
(14)

where
R(t0, t1) = max{σb(t0, t1), σb(t1, f t1)γ(σb(t0, f t0), σb(t0, t1))}

= max{σb(t0, t1), σb(t1, t2)γ(σb(t0, t1), σb(t0, t1))}
≤ max{σb(t0, t1), σb(t1, t2)}.

Now, if σb(t0, t1) ≤ σb(t1, t2), then R(t0, t1) = σb(t1, t2),and from (14) we have

spσb(t1, t2) ≤ kσb(t1, t2),

which is a contradiction. Therefore,

max{σb(t0, t1), σb(t1, t2)} = σb(t0, t1), (15)

and Inequality (14) implies that

σb(t1, t2) ≤
k
sp σb(t0, t1) = λσb(t0, t1), (16)

where 0 < λ = k/sp < 1/s.
In the same manner, one can show that

σb(t2, t3) ≤
k
sp σb(t1, t2) = λσb(t1, t2).

Furthermore, in general, we have that

σb(tn, tn+1) ≤ λσb(tn−1, tn) for all n ∈ N. (17)

Then, in view of Lemma 4, we get

lim
n→∞

σb(tn, tn+1) = 0, (18)

{tn} as a Cauchy sequence, and lim
n,m→∞

σb(tn, tm) = 0. Since M is complete, there exists z ∈ M such that

0 = lim
n,m→∞

σb(tn, tm) = lim
n→∞

σb(tn, z) = σb(z, z). (19)

By using Lemma 1, we have f tn → f z , that is lim
n→∞

σb( f tn, f z) = σb( f z, f z).

On the other side, lim
n→∞

σb(tn, z) = 0 = σb(z, z); thus, by Preposition 1,

s−1σb(z, f z) ≤ lim
n→∞

σb(tn, f z) ≤ sσb(z, f z).

This implies that
s−1σb(z, f z) ≤ σb( f z, f z) ≤ sσb(z, f z). (20)
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Since p ≥ 1, in view of (19) and (20), and using (13), we have

spσb(z, f z) ≤ α(z, z)σb( f z, f z) ≤ kR(z, z)
= kmax{σb(z, z), σb(z, f z)γ(σb(z, f z), σb(z, z))}
= kmax{0, σb(z, f z)γ(σb(z, f z), 0)}
≤ kσb(z, f z).

(21)

From (21), we get σb(z, f z) = 0, that is, f z = z and z is a fixed point of f . �

Example 4. Consider the set M = [0, 1] equipped with a b-metric-like σb(t, r) = (t + r)2 for all
t, r ∈ M. The pair (M, σb) is a complete b-metric-like space with coefficient s = 2. Define f : M→ M and
α : M×M→ R+ by

f t =

{
t/6 i f t ∈ [0, 1]
4 i f t > 1

and α(t, r) =

{
s2 t, r ∈ [0.1]
0 otherwise

.

It is easy to show that conditions (i) and (iii) hold. With regards to (ii), for all t, r ∈ [0, 1],
s = 2,we have

α(t, r)σb( f t, f r) = s2σb( f t, f r) = 22( t
6 + r

6
)2

= 4 (t+r)2

36 = 4
36 (t + r)2

= 1
9 σb(t, r) ≤ kσb(t, r) ≤ kR(t, r).

Here, the conditions of Theorem 1 are verified and we see that {0, 4} ⊂ Fix( f ).
Below, we present analogous theorems for Theorem 1 using properties Hsp and Usp .

Theorem 2. The conclusion of Theorem 1 remains true if the continuity property of the self-mapping f on
(M, σb) is replaced by the property Hsp .

Proof. From arguments similar to the proof of Theorem 1, we obtain that the sequence {tn} defined
by tn+1 = f tn for all n ≥ 0 is a Cauchy sequence convergent to z, such that (18)–(20) hold. Since the
condition Hsp is satisfied, there exists a subsequence

{
tnk

}
of {tn} such that α

(
tnk , z

)
≥ sp for all k ∈ N.

Applying (13), with t = tnk and r = z, we have

spσb( f tn, f z) ≤ α(tn, z)σb( f tn, f z) ≤ kR(tn, z)
= kmax{σb(tn, z), σb(z, f z)γ(σb(tn, f tn), σb(tn, z))}
= kmax{σb(tn, z), σb(z, f z)γ(σb(tn, tn+1), σb(tn, z))}.

(22)

Taking the upper limit as n→ ∞ in (22), using Lemma 2, and (18), (19), and the property of γ,
we obtain

sp−1σb(z, f z) = sps−1σb(z, f z) ≤ kσb(z, f z). (23)

From (23), σb( f z, z) = 0, which implies that f z = z. Hence, z is a fixed point of f . �

Theorem 3. Adding condition Usp to the hypotheses of Theorem 1 (respective to Theorem 2), we obtain the
uniqueness of fixed point of f .

Proof. On the contrary we assume that z, v ∈ Fix( f ) with z 6= v. By the hypothesis Usp , α(z, v) ≥ sp.
We shall now prove that, if z is a fixed point of f , then σb(z, z) = 0. Applying (13), we have
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spσb(z, z) = spσb( f z, f z) ≤ α(z, z)σb( f z, f z)
≤ kR(z, z)
= kmax{σb(z, z), σb(z, f z)γ(σb(z, f z), σb(z, z))}
= kmax{σb(z, z), σb(z, z)γ(σb(z, z), σb(z, z))}
= kσb(z, z),

which implies that σb(z, z) = 0.
Again, by the hypothesis Usp and applying (13), we have

spσb(z, v) = spσb( f z, f v) ≤ α(z, v)σb( f z, f v)
≤ kR(z, v)
= kmax{σb(z, v), σb(v, f v)γ(σb(z, f z), σb(z, v))}
= kmax{σb(z, v), σb(v, v)γ(σb(z, z), σb(z, v))}
= kσb(z, v),

which implies that σb(z, v) = 0, which is a contradiction. Hence, z = v. �

Some corollaries can be derived from above theorems, and to avoid repetition, we include all the
properties Hsp and Usp .

Corollary 1. Let (M, σb) be a complete b-metric-like space with coefficient s ≥ 1 and f a self-mapping on
M satisfying

spσb( f t, f r) ≤ kR(t, r)

for all t, r ∈ M, where 0 ≤ k < 1. Then, f has a unique fixed point in M.

Proof. It suffices to take α(t, r) = sp in Theorem 1. �

If in Theorem 1 we take k = 1/s and α(t, r) = sp, then we obtain a weaker contractive
condition below.

Corollary 2. Let (M, σb) be a complete b-metric-like space with coefficient s > 1. Let f be a self-map on
M satisfying

sp+1σb( f t, f r) ≤ R(t, r)

for all t, r ∈ M. Then, f has a unique fixed point.

Definition 10. Let (M, σb) be a b-metric-like space with coefficient s ≥ 1. A self-mapping f on M is an
αsp -Dass and Gupta contraction if it satisfies

α(t, r)σb( f t, f r) ≤ α
σb(r, f r)[1 + σb(t, f t)]

1 + σb(t, r)
+ βσb(t, r)

for all t, r ∈ M, where 0 ≤ α + β < 1.

Corollary 3. Conclusions of Theorem 3 remain true if Condition (ii) is replaced byan αsp -Dass and Gupta
contractive condition.

Proof. Define γ(x, y) = (1 + x)/(1 + y) for all x, y ∈ R+. Then, the inequality of Definition 10 becomes
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α(t, r)σb( f t, f r) ≤ α
σb(r, f r)[1+σb(t, f t)]

1+σb(t,r)
+ βσb(t, r)

= ασb(r, f r)γ(σb(t, f t), σb(t, r)) + βσb(t, r)
≤ (α + β)max{σb(t, r), σb(r, f r)γ(σb(t, f t), σb(t, r))}
= kmax{σb(t, r), σb(r, f r)γ(σb(t, f t), σb(t, r))},

where k = α + β < 1, and the inequality is a special case of (13). �

Definition 11. Let (M, σb) be a b-metric-like space with coefficient s ≥ 1. A self-mapping f on M is an
αsp -Jaggi contraction if it satisfies

α(t, r)σb( f t, f r) ≤ α
σb(t, f t)σb(r, f r)

σb(t, r)
+ βσb(t, r)

for all t, r ∈ M with σb(t, r) > 0, where 0 ≤ α + β < 1.

Corollary 4. If we replace Condition (ii) by an αsp -Jaggi contractive condition, then the conclusions of Theorem
1 (and respective to Theorems 2 and 3) remain true.

Proof. Use γ(x, y) = x/y for all x, y ∈ R+ and y 6= 0 in the inequality of Definition 11. �

Remark 3.

(1) Theorem 1 extends and generalizes Theorems 3.4 in Reference [9] and 3.13 in Reference [10].
(2) If we use different choices for the function γ (for example, γ(x, y) = x/(x + y) with x + y 6= 0,

γ(x, y) =
√

xy/(1 + y), γ(x, y) = x/(1 + y), . . . for all x, y ∈ R+), we obtain various corollaries.
(3) Similarly, we can get the corresponding conclusions in b-metric space.
(4) By taking α(t, r) = sp in previous theorems, we obtain results for generalized (s− k, R) contractions.

Before proceeding further with the ongoing main theorem, we use the following denotations:

Ψ is the class of functions ψ : R+ → R+ continuous and increasing;
Φ is the class of functions φ : R+ → R+ continuous and φ(x) < ψ(x) for every x > 0;
S is the class of functions β : R+ → [0, 1) satisfying the condition: β(xn)→ 1 as n→ ∞ implies that
xn → 0 as n→ ∞.

Let f , g : M→ M be two self-mappings,

E(t, r) = max{σb(t, r), σb(t, f t), σb(r, gr),
σb(t, gr) + σb(r, f t)

4s
} (24)

for all t, r ∈ M.
Now, we introduce the definition of (αsp − ψ, φ)-contraction pairs of mappings.

Definition 12. Let ( f , g) be a pair of self-mappings in a b-metric-like space (M, σb) with coefficient s ≥ 1.
Also, suppose that α : M×M→ [0, ∞) exists and some constant p such that p ≥ 2. A pair ( f , g) is called a
generalized (αsp − ψ, φ)-contraction pair, if they satisfy

ψ(α(t, r)σb( f t, gr)) ≤ φ(E(t, r)) (25)

for all t, r ∈ M with α(t, r) ≥ sp, where ψ ∈ Ψ, φ ∈ Φ and E(t, r) is defined by (24).

Remark 4.

(1) If we take g = f , then we obtain the definition of (αsp − ψ, φ)-contractive mapping as in Reference [20].
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(2) For s = 1, the definition reduces to an α− (ψ, φ)-contraction pair in a metric space.
(3) The above definition reduces to a (ψ, φ, s)-contraction pair for α(t, r) = sp.

Theorem 4. Let ( f , g) be a pair of self-mappings in a complete b-metric-like space (M, σb) with coefficient
s ≥ 1. If ( f , g) is a generalized (αsp − ψ, φ)-contraction pair, and the following conditions hold:

(i) ( f , g) is an αsp -admissible pair;
(ii) There exists t0 ∈ M such that min{α(t0, f t0), α( f t0, t0)} ≥ sp;
(iii) Property Hsp is satisfied.

Then, f and g have a common fixed point u ∈ M. Moreover, f and g have a unique common
fixed point if property Usp is satisfied.

Proof. Since ( f , g) is an αsp-admissible pair, then t0 ∈ M exists with α(t0, f t0) ≥ sp and α( f t0, t0) ≥ sp.
Take t1 = f t0 and t2 = gt1. By induction, we construct an iterative sequence {tn} in M, such that
t2n+1 = f t2n and t2n+2 = gt2n+1 for all n ≥ 0. By Condition (ii), we have α(t0, t1) ≥ sp and α(t1, t0) ≥ sp,
and using (i), we obtain that

α(t1, t2) = α( f t0, gt1) ≥ sp and α(t2, t1) = α(gt1, f t0) ≥ sp.

Also, we have

α(t3, t2) = α( f t2, gt1) ≥ sp and α(t2, t3) = α(gt1, f t2) ≥ sp.

In general, by induction, we obtain

α(tn, tn+1) ≥ sp and α(tn+1, tn) ≥ sp for all n ≥ 0. (26)

If for some n, we have σb(t2n+1, t2n) = 0, then σb(t2n+1, t2n) = 0 gives σb(t2n+1, t2n+2) = 0.
Indeed, by (24), we have

E(t2n, t2n+1) = max

{
σb(t2n, t2n+1), σb(t2n, f t2n), σb(t2n+1, gt2n+1),
σb(t2n+1, f t2n)+σb(t2n ,gt2n+1)

4s

}

= max

{
σb(t2n, t2n+1), σb(t2n, t2n+1), σb(t2n+1, t2n+2),
σb(t2n+1,t2n+1)+σb(t2n ,t2n+2)

4s

}

≤ max

{
σb(t2n, t2n+1), σb(t2n, t2n+1), σb(t2n+1, t2n+2),
2sσb(t2n ,t2n+1)+s[σb(t2n ,t2n+1)+σb(t2n+1,t2n+2)]

4s

}
= max

{
0, 0, σb(t2n+1, t2n+2),

σb(t2n+1,t2n+2)
4

}
= σb(t2n+1, t2n+2).

Using (25), we obtain

ψ(σb(t2n+1, t2n+2)) ≤ ψ(spσb(t2n+1, t2n+2)) = ψ(spσb( f t2n, gt2n+1))

≤ ψ(α(t2n, t2n+1)σb( f t2n, gt2n+1))

≤ φ(E(t2n, t2n+1)) = φ(σb(t2n+1, t2n+2)).

By property of ψ, φ, the previous inequality implies σb(t2n+1, t2n+2) = 0, that is, t2n+1 = t2n+2.
We deduce that t2n = t2n+1 = f t2n and t2n = t2n+2 = gt2n+1 = g f t2n = gt2n. Hence, t2n is a common
fixed point of f and g, and the proof is completed. Now, we assume that σb(tn, tn+1) > 0 for all n ≥ 0.
By (26), applying Condition (25), we have
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ψ(σb(t2n+1, t2n)) ≤ ψ(spσb(t2n+1, t2n)) = ψ(spσb( f t2n, gt2n−1))

≤ ψ(α(t2n, t2n−1)σb( f t2n, gt2n−1))

≤ φ(E(t2n, t2n−1)) < ψ(E(t2n, t2n−1)),
(27)

where

E(t2n, t2n−1) = max

{
σb(t2n, t2n−1), σb(t2n, f t2n), σb(t2n−1, gt2n−1),
σb(t2n−1, f t2n)+σb(t2n ,gt2n−1)

4s

}

= max

{
σb(t2n, t2n−1), σb(t2n, t2n+1), σb(t2n−1, t2n),
σb(t2n−1,t2n+1)+σb(t2n ,t2n)

4s

}

≤ max

{
σb(t2n, t2n−1), σb(t2n, t2n+1), σb(t2n−1, t2n),
s[σb(t2n−1,t2n)+σb(t2n ,t2n+1)]+2sσb(t2n ,t2n+1)

4s

}
.

(28)

If we suppose that σb(t2n−1, t2n) < σb(t2n, t2n+1) for some n ∈, then, from (28), we get

E(t2n−1, t2n) ≤ σb(t2n, t2n+1). (29)

Again, by (27) and property of ψ, we get

σb(t2n+1, t2n) ≤ E(t2n, t2n−1). (30)

From (29) and (30), we have

E(t2n−1, t2n) = σb(t2n, t2n+1). (31)

From (27), and using (31), we obtain

ψ(spσb(t2n+1, t2n)) = ψ(spσb( f t2n, gt2n−1)) ≤ ψ(α(t2n, t2n−1)σb( f t2n, gt2n−1))

≤ φ(E(t2n, t2n−1)) = φ(σb(t2n+1, t2n)) < ψ(σb(t2n+1, t2n)).
(32)

By property of ψ, Inequality (32) implies σb(t2n, t2n+1) ≤ σb(t2n−1, t2n) for all n ∈ N.
Hence, the sequence of nonnegative numbers {σb(t2n+1, t2n)} is non-increasing. Thus, it converges

to a nonnegative number, say δ ≥ 0. That is, lim
n→∞

σb(tn, tn+1) = δ, and also lim
n→∞

σb(tn, tn+1) =

lim
n→∞

E(tn−1, tn) = δ. If δ > 0, and we consider

ψ(spσb(t2n+1, t2n)) = ψ(spσb( f t2n, gt2n−1))

≤ ψ(α(t2n, t2n−1)σb( f t2n, gt2n−1)) ≤ φ(E(t2n, t2n−1)) = φ(σb(t2n+1, t2n)),
(33)

then, letting n→ ∞ in (33), we obtain ψ(δ) ≤ φ(δ), which implies δ = 0, that is,

lim
n→∞

σb(tn, tn+1) = lim
n→∞

E(tn−1, tn) = 0. (34)

Now, we prove that lim
n,m→∞

σb(tn, tm) = 0. It is sufficient to show that lim
n,m→∞

σb(t2n, t2m) = 0.

Suppose, on the contrary, that lim
n,m→∞

σb(t2n, t2m) 6= 0. Then, using Lemma 4, we get that there exists

ε > 0, and two subsequences {mk} and {nk} of positive integers, with nk > mk > k, such that

ε ≤ limsup
k→∞

σb(t2nk , t2mk ) ≤ εs, ε
s ≤ limsup

k→∞
σb(t2mk , t2nk−1) ≤ εs,

ε
s2 ≤ limsup

k→∞
σb(t2nk−1, t2mk+1) ≤ εs2, ε

s ≤ limsup
k→∞

σb(t2mk+1, t2nk ) ≤ εs2.
(35)

Furthermore, E(t, r) is
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EI
(
t2mk , t2nk−1

)
= max

{
σb(t2mk , t2nk−1), σb(t2mk , f t2mk ), σb(t2nk−1, gt2nk−1),
σb(t2nk−1, f t2mk

)+σb(t2mk
,gt2nk−1)

4s

}

= max

{
σb(t2mk , t2nk−1), σb(t2mk , t2mk+1), σb(t2nk−1, t2nk ),
σb(t2nk−1,t2mk+1)+σb(t2mk

,t2nk
)

4s

}
.

(36)

Hence, by (34)–(36), we have

limsup
k→∞

E
(
t2mk , t2nk−1

)
= limsup

k→∞
max

{
σb(t2mk , t2nk−1), σb(t2mk , t2mk+1), σb(t2nk−1, t2nk ),
σb(t2nk−1,t2mk+1)+σb(t2mk

,t2nk
)

4s

}
≤ max

{
εs, 0, 0, εs2+εs

4s

}
≤ εs.

(37)

Since α
(
t2mk , t2nk−1

)
≥ sp from (25), we have

ψ
(
spσb(t2mk+1, t2nk )

)
≤ ψ

(
spσb( f t2mk , gt2nk−1)

)
≤ ψ

(
α
(
t2mk , t2nk−1

)
σb( f t2mk , gt2nk−1)

)
≤ φ

(
E
(
t2mk , t2nk−1

))
.

(38)

Hence, by (35), (37), and (38), we obtain

ψ(εs) ≤ ψ
(
εsp−1) = ψ

(
sp ε

s
)
≤ ψ

(
limsup

k→∞
σb(tmk , tnk )

)

≤ φ

(
limsup

k→∞

(
E
(
tmk−1, tnk−1

)))
≤ φ(εs),

which implies that ε = 0, a contradiction with ε > 0. Thus, lim
n,m→∞

σb(tn, tm) = 0, that is, {tn} is a

Cauchy sequence in M. By completeness of (M, σb), there exists u ∈ M such that {tn} is convergent to
u, that is, lim

n→∞
σb(tn, u) = lim

n→∞
σb(tn, tm) = σb(u, u) = 0. By condition Hsp , there exists a subsequence{

tnk

}
of {tn} such that α

(
tnk , u

)
≥ sp and α

(
u, tnk

)
≥ sp for all k ∈ N. Since α

(
t2n(k), u

)
≥ sp, applying

(25), with t = t2nk and r = u, we obtain

ψ
(

spσb

(
t2n(k)+1, gu

))
= ψ

(
spσb

(
f t2n(k), gu

))
≤ ψ

(
α
(

t2n(k), u
)

σb

(
f t2n(k), gu

))
≤ φ

(
E
(

t2n(k), u
))

,

(39)

where

E
(

t2n(k), u
)

= max

{
σb
(
t2nk , u

)
, σb
(
t2nk , f t2nk

)
, σb(u, gu),

σb(t2nk
,gu)+σb(u, f t2nk )

4s

}

= max

 σb
(
t2nk , u

)
, σb
(
t2nk , t2nk+1

)
, σb(u, gu),

σb(t2nk
,gu)+σb

(
u,t2nk+1

)
4s

.

(40)

By (40), Lemma 2, and (34), we obtain

limsup
n→∞

E
(

t2n(k), u
)
≤ max

{
0, 0, σb(u, gu),

sσb(u, gu)
4s

}
= σb(u, gu). (41)

Taking limit superior as k→ ∞ in (39), considering (41) and Lemma 2, we obtain
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ψ
(
sp−1σb(u, gu)

)
= ψ

(
sps−1σb(u, gu)

)
≤ ψ

(
splimsup

k→∞
σb
(
tnk , gu

))

≤ φ

(
limsup

k→∞
E
(
tnk , u

))
≤ φ(σb(u, gu)).

(42)

From (42) we get σb(u, gu) = 0 and gu = u. Hence, u is a fixed point of g. Similarly, it can be
proven that σb( f u, u) = 0 and u is a common fixed point of f and g.

Suppose that u and z are common fixed points of the pair ( f , g) such that u 6= z. Then,
by hypothesis Usp and applying (25), we have

ψ(spσb(u, u)) ≤ ψ(α(u, u)σb( f u, gu))
≤ φ(E(u, u)) ≤ φ(σb(u, u)),

(43)

where

E(u, u) = max
{

σb(u, u), σb(u, u), σb(u, u),
σb(u, u) + σb(u, u)

4s

}
= σb(u, u).

From Inequality (43), it follows that σb(u, u) = 0 (also σb(z, z) = 0).
Again, we have

ψ(spσb(u, z)) ≤ ψ(α(u, z)σb( f u, gz))
≤ φ(E(u, z)) ≤ φ(σb(u, z)),

where E(u, z) = σb(u, z).
From the inequality above, follows σb(u, z) = 0. Thus, u = z, and the common fixed point is

unique. �

Remark 5.

1. If we take the mapping g = f in Theorem 4, we obtain Theorem 3.13 of Zoto et al. in Reference [7].
2. By taking ψ(t) = t and p = 2 in Theorem 4, we obtain Theorem 2.2 of Aydi et al. in Reference [8].
3. Theorem 4 generalizes and extends Theorem 2.7 in Reference [4], Theorem 2.7 in Reference [6], Theorems 3

and 4 in Reference [11], Theorems 2.9 and 2.16 in Reference [8], and Theorem 3.16 in Reference [12].

Remark 6. A variety of well-known contraction, can be derived by choosing the functions ψ ∈ Ψ and φ ∈ Φ
suitably; for example, φ(x) = ψ(x) − ϕ(x), where ϕ ∈ Ψ; ψ(x) = x and φ(x) = β(x)x where β ∈ S;
ψ(x) = x; φ(x) = λψ(x).

Corollary 5. Let ( f , g) be a pair of self-mappings in a b-metric-like space (M, σb) with coefficient
s ≥ 1, satisfying

ψ(spσb( f t, gr)) ≤ φ(E(t, r))

for all t, r ∈ M, where ψ ∈ Ψ, ϕ ∈ Φ, some p ≥ 2, and E(t, r) is defined by (24).

Then, f and g have a unique common fixed point t ∈ M.

Proof. It suffices to take α(t, r) = sp in Theorem 4. �

3. Application

In this section, we provide an application for the existence of a solution of a system of integral
equations. In particular, we apply Corollary 5 to show an existence theorem for a solution of a system
of nonlinear integral equations given below.

t(h) =
∫ h

0 G1(h, v, t(v))dv,
t(h) =

∫ h
0 G2(h, v, t(v))dv.

(44)
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Let M = C([0, H], R) be the set of real continuous functions defined on [0, H] for H > 0.
A b-metric-like is given by

σb(t, r) = max
h∈[0,1]

(|t(h)|+ |r(h)|)q for all t, r ∈ M.

It is noticed that (M, σb) is a complete b-metric-like space with parameter s = 2q−1, where q > 1.
Take the self-mappings f , g : M→ M by

f t(h) =
∫ h

0 G1(h, v, t(v))dv,
gt(h) =

∫ h
0 G2(h, v, t(v))dv.

Then, the existence of a solution to (44) is equivalent to the existence of a common fixed point of
f and g.

Theorem 5. Consider the system of integral Equation (44), and suppose that the following applies:

(a) G1, G2 : [0, H]× [0, H]× R→ R+ (that is G1(h, v, t(v)) ≥ 0, G2(h, v, r(v)) ≥ 0) are continuous;

(b) There exists a continuous function µ : [0, H]× [0, H]→ R such that for all (h, v) ∈ [0, H]2 and t, r ∈ M,
(c) is satisfied;

(c) (|G1(h, v, t(v))|+ |G2(h, v, r(v))|) ≤ µ(h, v)(|t(v)|+ |r(v)|);

(d) There exist p ≥ 2 and L ∈ (0, 1), such that for all h ∈ [0, H] sup
h∈[0,H]

∫ h
0 µ(h, v)dv ≤ q

√
L
sp .

Then, the system of integral Equation (44) has a unique solution t ∈ M.

Proof. For t, r ∈ M from Conditions (b) and (c), for all h, we have

σb( f t(h), gr(h)) = (| f t(h)|+ |gr(h)|)q

=
(∣∣∣∫ h

0 G1(h, v, t(v))dv
∣∣∣+ ∣∣∣∫ h

0 G2(h, v, r(v))dv
∣∣∣)q

≤
(∫ h

0 |G1(h, v, t(v))|dv +
∫ h

0 |G2(h, v, r(v))|dv
)q

=
(∫ h

0 (|G1(h, v, t(v))|+ |G2(h, v, r(v))|)dv
)q

≤
(∫ h

0 µ(h, v)(|t(v)|+ |r(v)|)dv
)q

≤
(∫ h

0 µ(h, v)
((

(|t(v)|+ |r(v)|)q) 1
q

)
dr
)q

≤
(

σ
1
q

b (t(v), r(v))
∫ h

0 µ(h, v)dv
)q

= σb(t(v), r(v))
(∫ h

0 µ(h, v)dv
)q

≤ σb(t(v), r(v))

(
sup

h∈[0,H]

∫ h
0 µ(h, v)dv

)q

≤
((

L
sp

) 1
q
)q

σb(t(v), r(v))

≤ L
sp E(t, r).

which, in turn, give spσb( f t(h), gr(h)) ≤ LE(t, r).
Taking ψ(x) = x, and φ(x) = Lx where L ∈ (0, 1), then all the assertions in Corollary 5

are satisfied; hence, applying Corollary 5, we get that the system of integral Equation (44) has a
unique solution. �
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4. Conclusions

This paper presents some common fixed point theorems for a pair of αsp -admissible mappings
under (ψ, φ)-contractive type conditions. Our results extend, generalize, and improve many new and
classical results in fixed point theory.
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