Resolvent-Free Method for Solving Monotone Inclusions
Abstract
:1. Introduction
2. Preliminaries
3. Main Result
Convergence Analysis
Algorithm 1 Convergence Analysis |
Initialization: Choose , and such that , select arbitrary starting points , and set . Iterative Step: Given the iterates and for each , choose such that , compute
Stopping Criterion: If , then stop. Otherwise, set and return to Iterative Step. |
4. Applications
4.1. Minimax Problem
4.2. Critical Points Problem
5. Numerical Examples
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Minty, G.J. Monotone (nonlinear)operators in Hilbert spaces. Duke Math. J. 1962, 29, 341–346. [Google Scholar] [CrossRef]
- Browder, F. The solvability of nonlinear functional equations. Duke Math. J. 1963, 30, 557–566. [Google Scholar] [CrossRef]
- Leray, J.; Lions, J. Quelques résultats de Višik sur les problèmes elliptiques non linéares par les méthodes de Minty-Browder. Bull. Soc. Math. Fr. 1965, 93, 97–107. [Google Scholar] [CrossRef]
- Minty, G.J. On a monotonicity method for the solution of non-linear equations in Banach spaces. Proc. Nat. Acad. Sci. USA 1963, 50, 1038–1041. [Google Scholar] [CrossRef] [PubMed]
- Pascali, D.; Sburian, S. Nonlinear Mappings of Monotone Type; Editura Academia Bucuresti: Bucharest, Romania, 1978; p. 101. [Google Scholar]
- Bot, R.I.; Csetnek, E.R. An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 2016, 71, 519–540. [Google Scholar] [CrossRef]
- Korpelevich, G.M. The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie Metody 1976, 12, 747–756. [Google Scholar]
- Khan, S.A.; Suantai, S.; Cholamjiak, W. Shrinking projection methods involving inertial forward–backward splitting methods for inclusion problems. Rev. Real Acad. Cienc. Exactas Fis. Nat. A Mat. 2019, 113, 645–656. [Google Scholar] [CrossRef]
- Sicre, M.R. On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems. Comput. Optim. Appl. 2020, 76, 991–1019. [Google Scholar] [CrossRef]
- Xu, H.K. A regularization method for the proximal point algorithm. J. Glob. Optim. 2006, 36, 115–125. [Google Scholar] [CrossRef]
- Yin, J.H.; Jian, J.B.; Jiang, X.Z.; Liu, M.X.; Wang, L.Z. A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications. Numer. Algorithms 2021, 88, 389–418. [Google Scholar] [CrossRef]
- Berinde, V. Iterative Approximation of Fixed Points; Lecture Notes in Mathematics; Springer: London, UK, 2007. [Google Scholar]
- Chidume, C.E. An approximation method for monotone Lipshitz operators in Hilbert spaces. J. Austral. Math. Soc. Ser. 1986, A 41, 59–63. [Google Scholar] [CrossRef]
- Kačurovskii, R.I. On monotone operators and convex functionals. Usp. Mat. Nauk. 1960, 15, 213–215. [Google Scholar]
- Zarantonello, E.H. Solving Functional Equations by Contractive Averaging; Technical Report #160; U. S. Army Mathematics Research Center: Madison, WI, USA, 1960. [Google Scholar]
- Martinet, B. Regularisation d’inequations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 1970, 4, 154–158. [Google Scholar]
- Browder, F.E. Nonlinear maximal monotone operators in Banach space. Math. Annalen 1968, 175, 89–113. [Google Scholar] [CrossRef]
- Bruck, R.E., Jr. A strongly convergent iterative method for the solution of 0∈Ux for a maximal monotone operator U in Hilbert space. J. Math. Anal. Appl. 1974, 48, 114–126. [Google Scholar] [CrossRef]
- Boikanyo, O.A.; Morosanu, G. A proximal point algorithm converging strongly for general errors. Optim. Lett. 2010, 4, 635–641. [Google Scholar] [CrossRef]
- Khatibzadeh, H. Some Remarks on the Proximal Point Algorithm. J. Optim. Theory Appl. 2012, 153, 769–778. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef]
- Shehu, Y. Single projection algorithm for variational inequalities in Banach spaces with applications to contact problems. Acta Math Sci. 2020, 40B, 1045–1063. [Google Scholar] [CrossRef]
- Yao, Y.H.; Shahzad, N. Strong convergence of a proximal point algorithm with general errors. Optim. Lett. 2012, 6, 621–628. [Google Scholar] [CrossRef]
- Teboulle, M. A simplified view of first order methods for optimization. Math. Program. Ser. B 2018, 170, 67–96. [Google Scholar] [CrossRef]
- Drusvyatskiy, D.; Lewis, A.S. Error bounds, quadratic growth, and linear convergence of proximal methods. Math. Oper. Res. 2018, 43, 919–948. [Google Scholar] [CrossRef]
- Nesterov, Y. Introductory Lectures on Convex Optimization; Cluwer: Baltimore, MD, USA, 2004. [Google Scholar]
- Alvarez, F. Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert spaces. SIAM J. Optim. 2004, 14, 773–782. [Google Scholar] [CrossRef]
- Alvarez, F.; Attouch, H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 2001, 9, 3–11. [Google Scholar] [CrossRef]
- Xu, H.K. Iterative algorithms for nonliear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Maingé, P.E. Approximation methods for common fixed points of nonexpansive mappingn Hilbert spaces. J. Math. Anal. Appl. 2007, 325, 469–479. [Google Scholar] [CrossRef]
- Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Amer Math Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef]
- Ataş, İ. Comparison of deep convolution and least squares GANs for diabetic retinopathy image synthesis. Neural Comput. Appl. 2023, 35, 14431–14448. [Google Scholar] [CrossRef]
- Ji, M.M.; Zhao, P. Image restoration based on the minimax-concave and the overlapping group sparsity. Signal Image Video Process. 2023, 17, 1733–1741. [Google Scholar] [CrossRef]
- Hassanpour, H.; Hosseinzadeh, E.; Moodi, M. Solving intuitionistic fuzzy multi-objective linear programming problem and its application in supply chain management. Appl. Math. 2023, 68, 269–287. [Google Scholar] [CrossRef]
- Qi, L.Q.; Sun, W.Y. Nonconvex Optimization and Its Applications; Book Series (NOIA, Volume 4), Minimax and Applications; Kluwer Academic Publishers: London, UK, 1995; pp. 55–67. [Google Scholar]
- Von Neumann, J. Zur Theorie der Gesellschaftsspiele. Math. Ann. 1928, 100, 295–320. [Google Scholar] [CrossRef]
- Von Neumann, J. Uber ein bkonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes. Ergebn. Math. Kolloqu. Wien 1935, 8, 73–83. [Google Scholar]
- Fan, K. A minimax inequality and applications. In Inequalities, III; Shisha, O., Ed.; Academic Press: San Diego, CA, USA, 1972; pp. 103–113. [Google Scholar]
- Trushnikov, D.N.; Krotova, E.L.; Starikov, S.S.; Musikhin, N.A.; Varushkin, S.V.; Matveev, E.V. Solving the inverse problem of surface reconstruction during electron beam surfacing. Russ. J. Nondestruct. Test. 2023, 59, 240–250. [Google Scholar] [CrossRef]
- Turgut, O.E.; Turgut, M.S.; Kirtepe, E. A systematic review of the emerging metaheuristic algorithms on solving complex optimization problems. Neural Comput. Appl. 2023, 35, 14275–14378. [Google Scholar] [CrossRef]
- Motreanu, D.; Panagiotopoulos, P.D. Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities; Nonconvex Optimization and Its Applications; Kluwer Academic: New York, NY, USA, 1999. [Google Scholar]
- Moameni, A. Critical point theory on convex subsets with applications in differential equations and analysis. J. Math. Pures. Appl. 2020, 141, 266–315. [Google Scholar] [CrossRef]
- Clarke, F. Functional Analysis Calculus of Variations and Optimal Control; Springer: London, UK, 2013; pp. 193–209. [Google Scholar]
- Chidume, C.E.; Osilike, M.O. Iterative solutions of nonlinear accretive operator equations in arbitrary Banach spaces. Nonlinear Anal. Theory Methods Appl. 1999, 36, 863–872. [Google Scholar] [CrossRef]
- Zegeye, H. Strong convergence theorems for maximal monotone mappings in Banach spaces. J. Math. Anal. Appl. 2008, 343, 663–671. [Google Scholar] [CrossRef]
Algorithm 1 | Regularization Method | ||||||
---|---|---|---|---|---|---|---|
CPU Time | Iter. | CPU Time | Iter. | ||||
0.0201 | 42 | 6.1691 | 0.0324 | 63 | 5.3741 | ||
0.0594 | 88 | 9.159 | 0.0530 | 115 | 0.0013 | ||
0.0422 | 276 | 0.0039 | 0.2205 | 367 | 0.0078 |
Case I | Case II | Case III | ||||
---|---|---|---|---|---|---|
Algorithm 1 | RM | Algorithm 1 | RM | Algorithm 1 | RM | |
CPU time | 2.64 | 5.28 | 4.29 | 8.6 | 3.62 | 7.59 |
Iteration Number | 9 | 17 | 9 | 23 | 13 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Gibali, A. Resolvent-Free Method for Solving Monotone Inclusions. Axioms 2023, 12, 557. https://doi.org/10.3390/axioms12060557
Tang Y, Gibali A. Resolvent-Free Method for Solving Monotone Inclusions. Axioms. 2023; 12(6):557. https://doi.org/10.3390/axioms12060557
Chicago/Turabian StyleTang, Yan, and Aviv Gibali. 2023. "Resolvent-Free Method for Solving Monotone Inclusions" Axioms 12, no. 6: 557. https://doi.org/10.3390/axioms12060557
APA StyleTang, Y., & Gibali, A. (2023). Resolvent-Free Method for Solving Monotone Inclusions. Axioms, 12(6), 557. https://doi.org/10.3390/axioms12060557