Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators
Abstract
:1. Introduction
2. Inequalities for Convex Functions
3. Inequalities for General Convex Functions
4. Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butt, S.I.; Agarwal, P.; Yousaf, S.; Guirao, J.L.G. Generalized fractal Jensen and Jensen–Mercer inequalities for harmonic convex function with applications. J. Inequal. Appl. 2022, 2022, 1. [Google Scholar] [CrossRef]
- Deng, Y.; Ullah, H.; Khan, M.A.; Iqbal, S.; Wu, S. Refinements of Jensen’s Inequality via Majorization Results with Applications in the Information Theory. J. Math. 2021, 2021, 1951799. [Google Scholar] [CrossRef]
- Dragomir, S.S. Some reverses of the Jensen inequality with applications. Bull. Aust. Math. Soc. 2013, 87, 177–194. [Google Scholar] [CrossRef]
- Duc, D.T.; Hue, N.N. Jensen-type inequalities and their applications. J. Math. Inequal. 2020, 14, 319–327. [Google Scholar] [CrossRef]
- Lu, G. New refinements of Jensen’s inequality and entropy upper bounds. J. Math. Inequal. 2018, 12, 403–421. [Google Scholar] [CrossRef]
- Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Springer Science+Business Media: Dordrecht, The Netherlands, 1993. [Google Scholar] [CrossRef]
- Mercer, A.M. A variant of Jensen’s inequality. J. Inequal. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Khan, A.R.; Pecaric, J.; Praljak, M. A Note on Generalized Mercer’s Inequality. Bull. Malays. Math. Sci. Soc. 2017, 40, 881–889. [Google Scholar] [CrossRef]
- Moradi, H.R.; Furuichi, S. Improvement and generalization of some Jensen-Mercer-type inequalities. J. Math. Inequal. 2020, 14, 377–383. [Google Scholar] [CrossRef]
- Vivas Cortez, M.J.; Hernández Hernández, J.E. Una Variante de la desigualdad de Jensen-Mercer para funciones h–convexas y funciones de operadores h–convexas. Revista MATUA 2017, 4, 62–76. [Google Scholar]
- Dragomir, S.S.; Pearce, C. Selected Topics on Hermite-Hadamard Inequalities and Applications, Science Direct Working Paper No S1574-0358(04)70845-X. Available online: https://ssrn.com/abstract=3158351 (accessed on 24 May 2023).
- Abdeljawad, T.; Ali, M.A.; Mohammed, P.O.; Kashuri, A. On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Math. 2021, 6, 712–725. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B. The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function. Int. J. Math. Math. Sci. 2022, 2022, 6716830. [Google Scholar] [CrossRef]
- Butt, S.I.; Yousaf, S.; Asghar, A.; Khan, K.A.; Moradi, H.R. New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function. J. Funct. Spaces 2021, 2021, 5868326. [Google Scholar] [CrossRef]
- Iscan, I. Jensen–Mercer inequality for GA-convex functions and some related inequalities. J. Inequal. Appl. 2020, 2020, 212. [Google Scholar] [CrossRef]
- Ögülmüs, H.; Sarikaya, M.Z. Hermite-Hadamard-Mercer Type Inequalities for Fractional Integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Zhao, J.; Butt, S.I.; Nasir, J.; Wang, Z.; Tlili, I. Hermite–Jensen–Mercer Type Inequalities for Caputo Fractional Derivatives. J. Funct. Spaces 2020, 2020, 7061549. [Google Scholar] [CrossRef]
- Nápoles Valdés, J.E.; Rabossi, F.; Samaniego, A.D. Convex functions: Ariadne’s thread or Charlotte’s Spiderweb? Adv. Math. Model. Appl. 2020, 5, 176–191. [Google Scholar]
- Bayraktar, B.; Nápoles, J.E. Hermite–Hadamard weighted integral inequalities for (h,m)-convex modified functions. Fract. Differ. Calc. 2022, 12, 235–248. [Google Scholar] [CrossRef]
- Bayraktar, B.; Nápoles, J.E. New generalized integral inequalities via (h,m)-convex modified functions. Izv. Inst. Mat. Inform. 2022, 60, 3–15. [Google Scholar] [CrossRef]
- Alomari, M.W. Mercer’s inequality for h-convex functions. Turkish J. Ineq. 2018, 2, 38–41. [Google Scholar]
- Butt, S.I.; Nasir, J.; Qaisar, S.; Abualnaja, K.M. k-Fractional Variants of Hermite-Mercer-Type Inequalities via s-Convexity with Applications. J. Funct. Spaces 2021, 2021, 5566360. [Google Scholar] [CrossRef]
- Khan, M.A.; Khan, A.R.; Pecaric, J. On the refinements of Jensen-Mercer’s inequality. Rev. Anal. Numér. Théor. Approx. 2012, 41, 62–81. [Google Scholar] [CrossRef]
- Niezgoda, M. A generalization of Mercer’s result on convex functions. Nonlinear Anal. 2009, 71, 2771–2779. [Google Scholar] [CrossRef]
- Nápoles Valdés, J.E.; Rodriguez, J.M.; Sigarreta, J.M. New Hermite–Hadamard Type Inequalities Involving Non-Conformable Integral Operators. Symmetry 2019, 11, 1108. [Google Scholar] [CrossRef]
- Akgül, A.; Khoshnaw, S.H.A. Application of fractional derivative on non-linear biochemical reaction models. Int. J. Intell. Netw. 2020, 1, 52–58. [Google Scholar] [CrossRef]
- Rezapour, S.; Deressa, C.T.; Hussain, A.; Etemad, S.; George, R.; Ahmad, B. A Theoretical Analysis of a Fractional Multi-Dimensional System of Boundary Value Problems on the Methylpropane Graph via Fixed Point Technique. Mathematics 2022, 10, 568. [Google Scholar] [CrossRef]
- Sintunavarat, W.; Turab, A. A unified fixed point approach to study the existence of solutions for a class of fractional boundary value problems arising in a chemical graph theory. PLoS ONE 2022, 17, e0270148. [Google Scholar] [CrossRef]
- Kian, M.; Moslehian, M.S. Refinements of the operator Jensen–Mercer inequality. Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar] [CrossRef]
- Bayraktar, B.; Nápoles Valdes, J.E. Generalized Fractional Integral Inequalities for (h,m,s)-convex modified functions of second type. Sahand Commun. Math. Anal. 2023; submitted. [Google Scholar]
- Sarikaya, M.Z.; Dahmani, Z.; Kiris, M.E.; Ahmad, F. (k,s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Katugampola, U.N. New approach to a generalized fractional integral. Appl. Math. Comput. 2011, 218, 860–865. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayraktar, B.; Kórus, P.; Nápoles Valdés, J.E. Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators. Axioms 2023, 12, 517. https://doi.org/10.3390/axioms12060517
Bayraktar B, Kórus P, Nápoles Valdés JE. Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators. Axioms. 2023; 12(6):517. https://doi.org/10.3390/axioms12060517
Chicago/Turabian StyleBayraktar, Bahtiyar, Péter Kórus, and Juan Eduardo Nápoles Valdés. 2023. "Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators" Axioms 12, no. 6: 517. https://doi.org/10.3390/axioms12060517
APA StyleBayraktar, B., Kórus, P., & Nápoles Valdés, J. E. (2023). Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators. Axioms, 12(6), 517. https://doi.org/10.3390/axioms12060517