Gamma-Nabla Hardy–Hilbert-Type Inequalities on Time Scales
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities Cambridge Univ; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Zhao, C.-J.; Chen, L.-Y.; Cheung, W. On some new Hilbert-type inequalities. Math. Slovaca 2011, 61, 15–28. [Google Scholar] [CrossRef]
- Zhao, C.; Cheung, W. On Hilbert type inequalities. J. Inequalities Appl. 2012, 2012, 145. [Google Scholar] [CrossRef]
- Pachpatte, B.G. A note on Hilbert type inequality. Tamkang J. Math. 1998, 29, 293–298. [Google Scholar] [CrossRef]
- Handley, G.D.; Koliha, J.J.; Pecaric, J. A Hilbert type inequality. Tamkang J. Math. 2000, 31, 311–316. [Google Scholar] [CrossRef]
- Zhao, C.; Cheung, W. Inverses of new Hilbert-Pachpatte-type inequalities. J. Inequalities Appl. 2006, 2006, 97860. [Google Scholar] [CrossRef]
- Pachpatte, B.G. On some new inequalities similar to Hilbert’s inequality. J. Math. Anal. Appl. 1998, 226, 166–179. [Google Scholar] [CrossRef]
- Yang, B.; Rassias, M.T.; Raigorodskii, A. On an extension of a Hardy–Hilbert-type inequality with multi-parameters. Mathematics 2021, 9, 2432. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B. On a Hardy-Hilbert-type inequality with a general homogeneous kernel. Int. J. Nonlinear Anal. Appl. 2016, 7, 249–269. [Google Scholar]
- Rassias, M.T.; Yang, B. A half-discrete Hardy-Hilbert-type inequality with a best possible constant factor related to the hurwitz zeta function. In Progress in Approximation Theory and Applicable Complex Analysis: In Memory of QI Rahman; Springer: Cham, Switzerland, 2017; pp. 183–218. [Google Scholar]
- Yang, B.; Wu, S.; Chen, Q. A new extension of Hardy-Hilbert’s inequality containing kernel of double power functions. Mathematics 2020, 8, 894. [Google Scholar] [CrossRef]
- Yang, B.; Wu, S.; Wang, A. A new Hilbert-type inequality with positive homogeneous kernel and its equivalent forms. Symmetry 2020, 12, 342. [Google Scholar] [CrossRef]
- Liao, J.; Wu, S.; Yang, B. On a new half-discrete Hilbert-type inequality involving the variable upper limit integral and partial sums. Mathematics 2020, 8, 229. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Akin-Bohner, E.; Bohner, M.; Akin, F. Pachpatte inequalities on time scales. JIPAM J. Inequal. Pure Appl. Math. 2005, 6, 6. [Google Scholar]
- Bohner, M.; Matthews, T. The Grüss inequality on time scales. Commun. Math. Anal. 2007, 3, 1–8. [Google Scholar]
- Bohner, M.; Matthews, T. Ostrowski inequalities on time scales. JIPAM J. Inequal. Pure Appl. Math. 2008, 9, 8. [Google Scholar]
- Dinu, C. Hermite-Hadamard inequality on time scales. J. Inequal. Appl. 2008, 2008, 287947. [Google Scholar] [CrossRef]
- Hilscher, R. A time scales version of a Wirtinger-type inequality and applications. J. Comput. Appl. Math. 2002, 141, 219–226. [Google Scholar] [CrossRef]
- Li, W.N. Some delay integral inequalities on time scales. Comput. Math. Appl. 2010, 59, 1929–1936. [Google Scholar] [CrossRef]
- Řehák, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005, 2005, 942973. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Lakshmikantham, V. Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations; Series in Real Analysis; World Scientific Publishing: Singapore, 1993; Volume 6. [Google Scholar]
- Li, J.D. Opial-type integral inequalities involving several higher order derivatives. J. Math. Anal. Appl. 1992, 167, 98–110. [Google Scholar]
- Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 1988. [Google Scholar]
- Rahmat, M.R.S.; Noorani, M.S.M. A new conformable nabla derivative and its application on arbitrary time scales. Adv. Differ. Equ. 2021, 2021, 238. [Google Scholar] [CrossRef]
- Cloud, M.J.; Drachman, B.C.; Lebedev, L. Inequalities; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Pachpatte, B.G. Inequalities similar to certain extensions of Hilbert’s inequality. J. Math. Anal. Appl. 2000, 243, 217–227. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarri, B.; El-Deeb, A.A. Gamma-Nabla Hardy–Hilbert-Type Inequalities on Time Scales. Axioms 2023, 12, 449. https://doi.org/10.3390/axioms12050449
Almarri B, El-Deeb AA. Gamma-Nabla Hardy–Hilbert-Type Inequalities on Time Scales. Axioms. 2023; 12(5):449. https://doi.org/10.3390/axioms12050449
Chicago/Turabian StyleAlmarri, Barakah, and Ahmed A. El-Deeb. 2023. "Gamma-Nabla Hardy–Hilbert-Type Inequalities on Time Scales" Axioms 12, no. 5: 449. https://doi.org/10.3390/axioms12050449
APA StyleAlmarri, B., & El-Deeb, A. A. (2023). Gamma-Nabla Hardy–Hilbert-Type Inequalities on Time Scales. Axioms, 12(5), 449. https://doi.org/10.3390/axioms12050449