A New Reliability Class-Test Statistic for Life Distributions under Convolution, Mixture and Homogeneous Shock Model: Characterizations and Applications in Engineering and Medical Fields
Abstract
:1. Introduction
2. Closure Properties
- 1.
- Property of convolution: The NBRUL class is preserved under convolution, whereExample 1.The convolution of the exponential distribution with itself yields the gamma distribution of order 2: , with strictly increasing failure rate. Thus, is not NWRUL.
- 2.
- Property of mixture: The NWRUL class is preserved under mixture, whereExample 2.Let “scale parameter” and . Then the failure rate function is which is strictly decreasing; thus, is not NBRUL.
- 3.
- The shock model under a homogeneous Poisson process: Suppose the device is subjected to a series of shocks that occur at random time intervals using the Poisson process with intensity . Further suppose that the device has a probability . From surviving the first shock k, where and . Then, the survival function of the device is given by
3. NBRUL Comparative Testing Alternatives
4. The Pitman Asymptotic Efficiency (PAE) of
5. Critical Points for Monte Carlo Distribution
Estimations of Test Power
6. Censoring Data Testing
Test Power Estimates
7. Applications: Uncensored and Censored Observations
7.1. Uncensored Data
7.1.1. Data Set I: COVID-19-Italy
7.1.2. Data Set II: COVID-19-Netherlands
7.1.3. Data Set III: Aircraft Air Conditioning
7.1.4. Data Set IV: Leukemia
7.2. Censored Data
7.2.1. Data Set V: Melanoma Patients
13 | 14 | 19 | 19 | 20 | 21 | 23 | 23 | 25 | 26 | 26 | 27 |
27 | 31 | 32 | 34 | 34 | 37 | 38 | 38 | 40 | 46 | 50 | 53 |
54 | 57 | 58 | 59 | 60 | 65 | 65 | 66 | 70 | 85 | 90 | 98 |
102 | 103 | 110 | 118 | 124 | 130 | 136 | 138 | 141 | 234 |
16 | 21 | 44 | 50 | 55 | 67 | 73 | 76 | 80 | 81 | 86 | 93 |
100 | 108 | 114 | 120 | 124 | 125 | 129 | 130 | 132 | 134 | 140 | 147 |
148 | 151 | 152 | 152 | 158 | 181 | 190 | 193 | 194 | 213 | 215 |
7.2.2. Data Set VI: Blood Cancer
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahmoud, M.A.W.; Abdul Alim, N.A.; Mansour, M.M.M. Testing exponentiality against exponential better than used in Laplace transform order based on goodness of fit approach. Al Azhar Bull. Sci. 2014, 25, 1–6. [Google Scholar]
- Bryson, M.C.; Siddiqui, M.M. Some criteria for aging. J. Am. Stat. Assoc. 1969, 64, 1472–1483. [Google Scholar] [CrossRef]
- Barlow, R.E.; Proschan, F. Statistical Theory of Reliability and Life Testing; Hold, Reinhart and Wiston, Inc.: Silver Spring, MD, USA, 1981. [Google Scholar]
- El-Arishy, S.M.; Diab, L.S.; El-Atfy, E.S. Characterizations on decreasing Laplace transform of time to failure class and hypotheses testing. J. Comput. Sci. Comput. 2020, 10, 49–54. [Google Scholar] [CrossRef]
- Abouammoh, A.M.; Qamber, I.S. New better than renewal-used classes of life distributions. IEEE Trans. Reliab. 2003, 52, 150–153. [Google Scholar] [CrossRef]
- Klefsjo, B. The HNBUE and HNWUE classes of life distributions. Nav. Res. Logist. 1982, 29, 331–344. [Google Scholar] [CrossRef]
- EL-Sagheer, R.M.; Mahmoud, M.A.W.; Etman, W.B.H. Characterizations and testing hypotheses for NBRUL-t∘ class of life distributions. J. Stat. Theory Pract. 2022, 16, 31. [Google Scholar] [CrossRef]
- Gadallah, A.M.; Mohammed, B.I.; Al-Babtain, A.A.; Khosa, S.K.; Kilai, M.; Yusuf, M.; Bakr, M.E. Modeling various survival distributions using a nonparametric hypothesis testing based on Laplace transform approach with some real applications. Comput. Math. Methods Med. 2022, 2022, 5075716. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.M.M. Assessing treatment methods via testing exponential property for clinical data. J. Stat. Probab. 2022, 11, 109–113. [Google Scholar]
- Bakr, M.E.; Nagy, M.; Al-Babtain, A.A.; Khosa, S.K. Statistical modeling of some cancerous diseases using the Laplace transform approach of basic life testing issues. Comput. Math. Med. 2022, 2022, 8964869. [Google Scholar] [CrossRef]
- Mahmoud, M.A.W.; EL-Sagheer, R.M.; Etman, W.B.H. Testing exponentiality against new better than renewal used in Laplace transform order. J. Stat. Appl. Probab. 2016, 5, 279–285. [Google Scholar] [CrossRef]
- Mahmoud, M.A.W.; EL-Sagheer, R.M.; Etman, W.B.H. Moments inequalities for NBRUL distributions with hypotheses testing applications. Austrian J. Stat. 2018, 47, 95–104. [Google Scholar]
- EL-Sagheer, R.M.; Abu-Youssef, S.E.; Sadek, A.; Omar, K.M.; Etman, W.B.H. Characterrization and testing NBRUL class of life distributions based on Laplace transform technique. J. Stat. Appl. Probab. 2022, 11, 1–14. [Google Scholar]
- Kumazawa, Y. A class of tests statistics for testing whether new is better than used. Commun.-Stat.-Theory Methods 1983, 12, 311–321. [Google Scholar] [CrossRef]
- Kayid, M.; Diab, L.S.; Alzughaibi, A. Testing NBU (2) class of life distribution based on goodness of fit approach. J. King Saud-Univ.-Sci. 2010, 22, 241–245. [Google Scholar] [CrossRef]
- Abu-Youssef, S.E.; El-Toony, A.A. A new class of life distribution based on Laplace transform and It’s applications. Inf. Sci. Lett. 2022, 11, 355–362. [Google Scholar]
- Mahmoud, M.A.W.; Abdul Alim, N.A. A goodness of fit approach to NBURFR and NBARFR classes. Econ. Qual. Control 2006, 21, 59–75. [Google Scholar] [CrossRef]
- Bakr, M.E.; Nagy, M.; Al-Babtain, A.A. Non-parametric hypothesis testing to model some cancers based on goodness of fit. AIMS Math. 2022, 7, 13733–13745. [Google Scholar] [CrossRef]
- Abu-Youssef, S.E.; Gerges, S.T. Based on the goodness of fit approach, a new test statistics for testing NBUCmgf class of life distributions. Pak. J. Stat. 2022, 38, 129–144. [Google Scholar]
- Mahmoud, M.A.W.; Diab, L.S.; Radi, D.M. Testing exponentiality against RNBUL class of life distribution based on goodness of fit. J. Stat. Appl. Probab. 2019, 8, 57–66. [Google Scholar] [CrossRef]
- Abu-Youssef, S.E.; Ali, N.S.A.; Bakr, M.E. Used better than aged in mgf ordering class of life distribution with application of hypothesis testing. J. Stat. Appl. Probab. 2020, 7, 23–32. [Google Scholar]
- Lee, A.J. U-Statistics; Marcel-Dekker: New York, NY, USA, 1989. [Google Scholar]
- Mugdadi, A.R.; Ahmad, I.A. Moment inequalities derived from comparing life with its equilibrium form. J. Stat. Inference 2005, 134, 303–317. [Google Scholar] [CrossRef]
- Kango, A.I. Testing for new is better than used. Commun.-Stat.-Theory Methods 1993, 12, 311–321. [Google Scholar]
- Abdel Aziz, A.A. On testing exponentiality against RNBRUE alternatives. Appl. Math. Sci. 2007, 1, 1725–1736. [Google Scholar]
- Etman, W.B.H.; EL-Sagheer, R.M.; Abu-Youssef, S.E.; Sadek, A. On some characterizations to NBRULC class with hypotheses testing application. Appl. Math. Inf. Sci. 2022, 16, 139–148. [Google Scholar]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Almongy, H.M.; Almetwally, E.M.; Aljohani, H.M.; Alghamdi, A.S.; Hafez, E.H. A new extended rayleigh distribution with applications of COVID-19 data. Results Phys. 2021, 23, 104012. [Google Scholar] [CrossRef] [PubMed]
- EL-Sagheer, R.M.; Eliwa, M.S.; Alqahtani, K.M.; EL-Morshedy, M. Asymmetric randomly censored mortality distribution: Bayesian framework and parametric bootstrap with application to COVID-19 data. J. Math. 2022, 2022, 8300753. [Google Scholar] [CrossRef]
- Keating, J.P.; Glaser, R.E.; Ketchum, N.S. Testing hypotheses about the shape parameter of a gamma distribution. Technometrics 1990, 32, 67–82. [Google Scholar] [CrossRef]
- Kotz, S.; Johnson, N.L. Encyclopedia of Statistical Sciences; John Wiley and Sons: New York, NY, USA, 1983; 613p. [Google Scholar]
- Susarla, V.; Van Ryzin, J. Empirical bayes estimation of a distribution (survival) function from right censored observations. Ann. Stat. 1978, 6, 740–754. [Google Scholar] [CrossRef]
- Ghitany, M.E.; Al-Awadhi, S. Maximum likelihood estimation of Burr XII distribution parameters under random censoring. J. Appl. Stat. 2002, 29, 955–965. [Google Scholar] [CrossRef]
Models | |||
---|---|---|---|
Test | Makeham | LFR | Weibull |
Mugdadi and Ahmad [23] | 0.039 | 0.408 | 0.170 |
Kango [24] | 0.144 | 0.433 | 0.132 |
Abdel-Aziz [25] | 0.184 | 0.535 | 0.223 |
Etman et al. [26] | 0.233 | 0.932 | 1.046 |
EL-Sagheer et al. [13] | 0.287 | 0.901 | 1.158 |
Proposed test | 0.280 | 0.946 | 1.116 |
Sample Size | Confidence Levels | ||
---|---|---|---|
5 | |||
10 | |||
15 | |||
20 | |||
25 | |||
29 | |||
30 | |||
35 | |||
40 | |||
43 | |||
45 | |||
50 | |||
59 |
n | Weibull | Gamma | |
---|---|---|---|
10 | 2 3 4 | ||
20 | 2 3 4 | ||
30 | 2 3 4 |
Sample Size | Confidence Intervals | ||
---|---|---|---|
10 | |||
20 | |||
30 | |||
40 | |||
50 | |||
51 | |||
60 | |||
70 | |||
80 | |||
81 |
n | Weibull | LFR | Gamma | |
---|---|---|---|---|
10 | 2 3 4 | |||
20 | 2 3 4 | |||
30 | 2 3 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etman, W.B.; El-Morshedy, M.; Eliwa, M.S.; Almohaimeed, A.; EL-Sagheer, R.M. A New Reliability Class-Test Statistic for Life Distributions under Convolution, Mixture and Homogeneous Shock Model: Characterizations and Applications in Engineering and Medical Fields. Axioms 2023, 12, 331. https://doi.org/10.3390/axioms12040331
Etman WB, El-Morshedy M, Eliwa MS, Almohaimeed A, EL-Sagheer RM. A New Reliability Class-Test Statistic for Life Distributions under Convolution, Mixture and Homogeneous Shock Model: Characterizations and Applications in Engineering and Medical Fields. Axioms. 2023; 12(4):331. https://doi.org/10.3390/axioms12040331
Chicago/Turabian StyleEtman, Walid B., Mahmoud El-Morshedy, Mohamed S. Eliwa, Amani Almohaimeed, and Rashad M. EL-Sagheer. 2023. "A New Reliability Class-Test Statistic for Life Distributions under Convolution, Mixture and Homogeneous Shock Model: Characterizations and Applications in Engineering and Medical Fields" Axioms 12, no. 4: 331. https://doi.org/10.3390/axioms12040331