#
Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions G_{3}(IX)

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Admissible Electromagnetic Fields in Homogeneous Spaces

## 3. Maxwell’s Equations with Zero Electromagnetic Field Sources in a Homogeneous Spacetime

## 4. Solutions of Maxwell Equations

## 5. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Stackel, P. Uber die intagration der Hamiltonschen differentialechung mittels separation der variablen. Math. Ann.
**1897**, 49, 145–147. [Google Scholar] [CrossRef] - Eisenhart, L.P. Separable systems of stackel. Ann. Math.
**1934**, 35, 284–305. [Google Scholar] [CrossRef] - Levi-Civita, T. Sulla Integraziome Della Equazione Di Hamilton-Jacobi Per Separazione Di Variabili. Math. Ann.
**1904**, 59, 383–397. [Google Scholar] [CrossRef] - Jarov-Jrovoy, M.S. Integration of Hamilton-Jacobi equation by complete separation of variables method. J. Appl. Math. Mech.
**1963**, 27, 173–219. [Google Scholar] [CrossRef] - Carter, B. New family of Einstein spaces. Phys. Lett.
**1968**, A25, 399–400. [Google Scholar] [CrossRef] - Shapovalov, V.N. Symmetry and separation of variables in the Hamilton-Jacobi equation. Sov. Phys. J.
**1978**, 21, 1124–1132. [Google Scholar] [CrossRef] - Shapovalov, V.N. Stackel’s spaces. Sib. Math. J.
**1979**, 20, 1117–1130. [Google Scholar] [CrossRef] - Miller, W. Symmetry And Separation of Variables; Cambridge University Press: Cambridge, UK, 1984; 318p. [Google Scholar]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.0). Symmetry
**2020**, 12, 1289. [Google Scholar] [CrossRef] - Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.1). Int. J. Geom. Meth. Mod. Phys
**2020**, 14, 2050186. [Google Scholar] [CrossRef] - Odintsov, S.D. Editorial for Special Issue Feature Papers 2020. Symmetry
**2023**, 15, 8. [Google Scholar] [CrossRef] - Oktay, C.; Salih, K. Maxwell-modified metric affine gravity. Eur. Phys. J.
**2021**, 81, 10. [Google Scholar] [CrossRef] - Mitsopoulos, A.; Tsamparlis, M.; Leon, G.A.; Paliathanasis, A. New conservation laws and exact cosmological solutions in Brans-Dicke cosmology with an extra scalar field. Symmetry
**2021**, 13, 1364. [Google Scholar] [CrossRef] - Dappiaggi, C.; Juarez-Aubry, B.A.; Ground, A.M. State for the Klein-Gordon field in anti-de Sitter spacetime with dynamical Wentzell boundary conditions. Phys. Rev. D
**2022**, 105, 105017. [Google Scholar] [CrossRef] - Astorga, F.; Salazar, J.F.; Zannias, T. On the integrability of the geodesic flow on a Friedmann-Robertson-Walker spacetime. Phys. Scr.
**2018**, 93, 085205. [Google Scholar] [CrossRef] [Green Version] - Capozziello, S.; De Laurentis, M.; Odintsov, D. Hamiltonian dynamics and Noether symmetries in extended gravity cosmology. Eur. Phys. J.
**2012**, C72, 2068. [Google Scholar] [CrossRef] - Kibaroglu, S.; Cebecioglu, O. Generalized cosmological constant from gauging Maxwell-conformal algebra. Phys. Lett. B
**2020**, 803, 135295. [Google Scholar] [CrossRef] - Shin’ichi, N.; Odintsov Sergei, D.; Valerio, F. Searching for dynamical black holes in various theories of gravity. Phys. Rev. D
**2021**, 103, 044055. [Google Scholar] [CrossRef] - Epp, V.; Pervukhina, O. The Stormer problem for an aligned rotator. MNRAS
**2018**, 474, 5330–5339. [Google Scholar] [CrossRef] [Green Version] - Epp, V.; Masterova, M.A. Effective potential energy for relativistic particles in the field of inclined rotating magnetized sphere. Astrophys. Space Sci.
**2014**, 353, 473–483. [Google Scholar] [CrossRef] [Green Version] - Kumaran, Y.; Ovgun, A. Deflection angle and shadow of the reissner-nordstrom black hole with higher-order magnetic correction in einstein-nonlinear-maxwell fields. Symmetry
**2022**, 14, 2054. [Google Scholar] [CrossRef] - Osetrin, K.; Osetrin, E. Shapovalov wave-like spacetimes. Symmetry
**2020**, 12, 1372. [Google Scholar] [CrossRef] - Osetrin, E.; Osetrin, K.; Filippov, A. Plane Gravitational Waves in Spatially-Homogeneous Models of type-(3.1) Stackel Spaces. Russ. Phys. J.
**2019**, 62, 292–301. [Google Scholar] [CrossRef] - Osetrin, K.; Osetrin, E.; Osetrina, E. Geodesic deviation and tidal acceleration in the gravitational wave of the Bianchi type IV universe. Eur. Phys. J. Plus
**2022**, 137, 856. [Google Scholar] [CrossRef] - Osetrin, K.; Osetrin, E.; Osetrina, E. Gravitational wave of the Bianchi VII universe: Particle trajectories, geodesic deviation and tidal accelerations. Eur. Phys. J. C
**2022**, 82, 1–16. [Google Scholar] [CrossRef] - Shapovalov, A.V.; Shirokov, I.V. Noncommutative integration method for linear partial differential equations. functional algebras and dimensional reduction. Theoret. Math. Phys.
**1996**, 106, 1–10. [Google Scholar] [CrossRef] - Shapovalov, A.; Breev, A. Harmonic Oscillator Coherent States from the Standpoint of Orbit Theory. Symmetry
**2023**, 15, 282. [Google Scholar] [CrossRef] - Breev, A.I.; Shapovalov, A.V. Non-commutative integration of the Dirac equation in homogeneous spaces. Symmetry
**2020**, 12, 1867. [Google Scholar] [CrossRef] - Breev, A.I.; Shapovalov, A.V. Yang–Mills gauge fields conserving the symmetry algebra of the Dirac equation in a homogeneous space. J. Phys. Conf. Ser.
**2014**, 563, 012004. [Google Scholar] [CrossRef] [Green Version] - Magazev, A.A.; Boldyreva, M.N. Schrodinger equations in electromagnetic fields: Symmetries and noncommutative integration. Symmetry
**2021**, 13, 1527. [Google Scholar] [CrossRef] - Magazev, A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups. Theor. Math. Phys.
**2012**, 173, 1654–1667. [Google Scholar] [CrossRef] - Obukhov, V.V. Algebra of symmetry operators for Klein-Gordon-Fock Equation. Symmetry
**2021**, 13, 727. [Google Scholar] [CrossRef] - Odintsov, S.D. Editorial for Feature Papers 2021–2022. Symmetry
**2023**, 15, 32. [Google Scholar] [CrossRef] - Obukhov, V.V. Algebra of the symmetry operators of the Klein-Gordon-Fock equation for the case when groups of motions G
_{3}act transitively on null subsurfaces of spacetime. Symmetry**2022**, 14, 346. [Google Scholar] [CrossRef] - Obukhov, V.V. Algebras of integrals of motion for the Hamilton-Jacobi and Klein-Gordon-Fock equations in spacetime with a four-parameter groups of motions in the presence of an external electromagnetic field. J. Math. Phys.
**2022**, 63, 023505. [Google Scholar] [CrossRef] - Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations, 2nd ed.; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Obukhov, V.V. Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in the stackel spaces of type (1.1). Int. J. Geom. Meth. Mod. Phys.
**2021**, 3, 2150036. [Google Scholar] [CrossRef] - Landau, L.D.; Lifshits, E.M. Theoretical Physics, Field Theory, 7th ed.; Science, C., Ed.; Nauka: Moskow, Russia, 1988; Volume II, 512p, ISBN 5-02-014420-7. [Google Scholar]
- Petrov, A.Z. Einstein Spaces; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Obukhov, V.V. Maxwell Equations in Homogeneous Spaces for Admissible Electromagnetic Fields. Universe
**2022**, 8, 245. [Google Scholar] [CrossRef] - Obukhov, V.V. Maxwell Equations in Homogeneous Spaces with Solvable Groups of Motions. Symmetry
**2022**, 14, 2595. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Obukhov, V.V.
Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions *G*_{3}(*IX*). *Axioms* **2023**, *12*, 135.
https://doi.org/10.3390/axioms12020135

**AMA Style**

Obukhov VV.
Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions *G*_{3}(*IX*). *Axioms*. 2023; 12(2):135.
https://doi.org/10.3390/axioms12020135

**Chicago/Turabian Style**

Obukhov, Valeriy V.
2023. "Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions *G*_{3}(*IX*)" *Axioms* 12, no. 2: 135.
https://doi.org/10.3390/axioms12020135