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1. Introduction

All the known methods of integration of the main differential equations of mathemati-
cal physics are based on the complete reduction of these equations to a system of ordinary
differential equations. The reduction is carried out using symmetry operators. For the
equations of motion of a classical or quantum sample particle in external electromagnetic
and gravitational fields, the symmetry operators are integrals of motion. It is known that a
necessary condition for the existence of integrals of motion is the existence of the spacetime
symmetry given by the Killing fields.

Thus, the problem of exact integration is closely related to the study of the spacetime
symmetry. At present, two methods of the exact integration of equations of motion are
known. These are the methods of commutative (CIM) and noncommutative (NCIM)
integration. The first method is based on the theory of the complete separation of variables,
and it is applicable in Stackel spaces. Stackel spaces admit complete sets consisting of
mutually commuting Killing fields. The theory of Stackel spaces was developed in [1–7]. A
description of the theory and a detailed bibliography can be found in [8–10] (see also, [11]).
Solutions of the field equations, which are still used widely in the theory of gravitation,
have been constructed on the basis of Stackel spaces. These solutions are often used in the
study of various effects in gravitational fields (see, for example, [12–25]).

The second method (NCI method) is based on the use of noncommutative algebras of
symmetry operators that are linear in moments and constructed using vector Killing fields.
This method was proposed in [26]. The development of the method and its application to
gravity theory can be found in [27–30].

As in Stackel spaces, in the spaces with a noncommutative group of motions, the
equations of motion of a test particle admit the complete reduction to a system of ordinary
differential equations. Therefore, we call the spacetime manifolds admitting noncommuta-
tive groups Gr, r ≥ 3 post-Stackel spaces (PSS).

By analogy with Stackel spaces, we call the PSS non-isotropic, if a group Gr (or its
subgroup of rank 3) acts transitively on a non-isotropic hypersurface of spacetime, or
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isotropic, if the hypersurface is isotropic. For non-isotropic post-Stackel spaces, we also use
the term “homogeneous post-Stackel spaces (HPSS)”.

The same classification problems can be considered for the PSS as for the Stackel spaces.
For example, in the papers [9,10], a complete classification was given for the case when
the Hamilton–Jacobi equation for a charged test particle admits the complete separation
of variables in the external electromagnetic field. A similar classification problem was
solved for the PSS as well. In [31], PSS with transitive four-parameter groups of motions
were considered; in [32], HPSS were considered (see also, [33]); in [34], PSS with groups
acting on isotropic hypersurfaces of transitivity were considered. PSS with four-parameter
groups of motions were considered in [35], provided that these groups have transitive
three-parameter subgroups. Thus, the potentials of all admissible electromagnetic fields
have been found, for which the Hamilton–Jacobi and Klein–Gordon–Fock equations have
algebras of symmetry operators given by the groups of motions of post-Stackel spaces.
It was proved that the Klein–Gordon–Fock equation admits the algebra of symmetry
operators given by groups of motions of PSS, if and only if the Hamilton–Jacobi equations
admit the appropriate algebra of the integrals of motion.

The next classification problem is the classification of the electrovacuum solutions
of the Einstein–Maxwell equations for the case when the CIM and NCIM methods are
applicable. During the century-long history of general relativity, many exact solutions of
the vacuum and electrovacuum Einstein equations have been found (see, for example, [36]).
Nevertheless, this problem remains relevant. The main purpose of the classification is not
so much to find new exact solutions but to list all the gravitational and electromagnetic
fields in which the equations of motion of test particles can be exactly integrated or at
least reduced to systems of ordinary differential equations. This problem is divided into
two stages.

In the first stage, all the non-equivalent classes of solutions of the vacuum Maxwell
equations for the potentials of admissible electromagnetic fields are found. In the second
stage, the obtained classification is used to classify the corresponding electrovacuum spaces.
Historically, for Stackel spaces this problem was solved before the problem of the first
stage (see the bibliography given in [9,10,37]). The present article is devoted to solving
the first stage of this classification problem. All the non-equivalent solutions of empty
Maxwell equations in homogeneous spaces of type IX, according to Bianchi’s classification,
are found.

2. Admissible Electromagnetic Fields in Homogeneous Spaces

There are two definitions of homogeneous spaces. According to the first, a spacetime
V4 is homogeneous if its subspace V3, endowed with the Euclidean space signature, admits
coordinate transformations (forming the group G3(N) of motions of spaces V4) that enable
the connection of any two points in V3 (see [38]). This definition directly implies that the
metric of the V4 in the semi-geodesic coordinate system [ui] can be represented as follows:

ds2 = −du02
+ ηabla

αlb
βduαduβ, gij = −δ0

i δ0
j + δa

i δb
j , (1)

ea
αeb

βηab(u0), det|ηab| > 0 ea
α,0 = 0.

The coordinate indices of the variables of the semi-geodesic coordinate system are denoted
by lower case Latin letters: i, j, k = 0, 1 . . . 3. The coordinate indices of the variables of the
local coordinate system on the hypersurface V3 are denoted by lower case Greek letters:
α, β, γ = 1, . . . 3. The time variable is denoted by a 0 index. The group indices and indices
of nonholonomic frame are denoted by a, b, c = 1, . . . 3. The summation is performed over
the repeated upper and lower indices within the index range.

The 1-form ea
αduα is invariant under the acting of the group G3(N). The vectors of the

frame ea
α define a nonholonomic coordinate system in V3. The dual triplet of vectors

eα
a , eα

a eb
α = δb

a , eα
a ea

β = δα
β
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defines the operators of the group algebra:

Ŷa = eα
a ∂a, [Ŷa, Ŷb] = Cc

abŶc. (2)

According to another definition, space–time V4 is homogeneous if it admits a three-
parameter group of motions G3(N), whose hypersurface V3 of transitivity has the Euclidean
space signature. The Killing vector fields ξα

a and their dual vector fields ξa
α form another

frame of the space V3 and another representation of the algebra of the group G3. The vector
fields ξα

a satisfy the Killing equations,

gαβ
,γ ξ

γ
a = gαγξ

β
a,γ + gβγξα

a,γ, (3)

and set the infinitesimal group operators of the algebra G3 as

X̂a = ξα
a ∂α, [X̂a, X̂b] = Cc

abX̂c. (4)

Let us consider an electromagnetic field with potential Ai. For a charged test
particle, moving in this external electromagnetic field, it has been proved that the
Hamilton–Jacobi equation

gijPiPj = m, Pi = pi + Ai (5)

and the Klein–Gordon–Fock equation

Ĥϕ = (gij P̂i P̂j)ϕ = m2 ϕ, P̂k = p̂k + Ak (6)

admit the integrals of motion, which are given by the Killing vectors

X̃α = ξ i
α pi (or ˆ̃Xα = ξ i

α p̂i),

if and only if the conditions
ξα

a (Ã),α = Cc
abÃ (7)

are satisfied (see paper [32]). Here, pi = ∂i ϕ; p̂k = −ı∇̂k; (∇̂k is the covariant derivative
operator corresponding to the partial derivative operator-∂̂i in the coordinate field ui), and
ϕ is a scalar function of a particle with mass m; Ãa = ξα

a Aα.
The electromagnetic field, whose potential satisfies condition (7), is called admissi-

ble. All admissible electromagnetic fields for the groups of motion Gr(N) (r ≤ 4) acting
transitively on the hypersurfaces of the spacetime have been found in [32–35].

Solutions of the set of equations (7) for HPSS of type IX have the form:

Aα = αa(u0)la
α ⇒ Aa = lα

a Aα = αa(u0). (8)

To prove this, let us find the frame vector. We use the metric tensor of IX-type
space by Bianchi, found in Petrov’s book [39]. As is known, the Bianchi type IX metric
contains as a special case the space of constant positive curvature and, therefore, is of
special interest for cosmology.

ds2 = du12
[a11 − (a12 cos 2u3 + a22 sin 2u3)] + 2du1du3((a13 cos u3 − a23 sin u3)+ (9)

+2du1du2[(a13 cos u3 − a23 sin u3) cos u1 + (a12 cos 2u3 − a22 sin 2u3) sin u1]

+du22
[a33cos u12

+ (a23 cos u3 + a13 sin u3) sin 2u1 + (a12 sin 2u3 + a22 cos 2u3 + a11)sin u12
]

2du2du3(a33 cos u1 + (a23 cos u3 + a13 sin u3) sin u1) + du32
a33 + edu02

.

aab are arbitrary functions on u0.
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To obtain the functions lα
a , it is sufficient to consider the components g13, g23 from the

system (3). The solution has the form:

la
α = δ

p
α la

p(u
1, u3) + δ3

αδa
3 .

From the equations

g13 = a13 cos u3 − a23 sin u3 = η3ala
1, g23 = a33 cos u1 + (a23 cos u3 + a13 sin u3) sin u1 = η3ala

1,

it follows that

la
α =

 cos u3 − sin u3 0
sin u1 sin u3 sin u1 cos u3 cos u1

0 0 1

, lα
a =

 cos u3 sin u3

sin u1 − cos u1 sin u3

sin u1

− sin u3 cos u3

sin u1 − cos u1 cos u3

sin u1

0 0 1

, (10)

la
αlα

b = δa
b .

The lower index numbers are lines. One can show that the vector fields (10) satisfy
Equations (1) and (2). We present the components of the vectors ξα

a in the form of a matrix:

||ξα
a || =

 0 1 0
cos u2 − cos u1 sin u2

sin u1
sin u2

sin u1

− sin u2 − cos u1 cos u2

sin u1
cos u2

sin u1

.

The components Ãα can be expressed through Aα as follows:

Ãa = Zb
a Ab,

where

||Zb
a = ξα

a lb
α|| =

 sin u1 sin u3 sin u1 cos u3 cos u1

(cos u2 cos u3 − sin u2 sin u3 cos u1) −(cos u2 sin u3 + sin u2 cos u3 cos u1) sin u1 sin u2

−(sin u2 cos u3 + cos u2 sin u3 cos u1) (sin u2 sin u3 − cos u2 cos u3 cos u1) cos u2 sin u1

.

It can be shown by direct calculation that the elements of the matrix Zb
a satisfy the equation:

Zb
a|c = Ca1

ca Zb
a1

, |a = lα
a ∂α. (11)

Therefore, Equation (7) can be reduced to the form:

ξα
a Ab,α = 0⇒ Aa = αa(u0). (12)

3. Maxwell’s Equations with Zero Electromagnetic Field Sources in a
Homogeneous Spacetime

All the exact solutions of vacuum Maxwell equations for solvable groups have been
found in papers [40,41]. In the present paper, the problem is solved for the group G3(IX).

We use the first definition of homogeneous spaces. Note, that for the spacetime with
the groups of motions G3(I)− G3(VI), G3(IX), both definitions are equivalent.

Consider the Maxwell equations with zero electromagnetic field sources in homogeneous
space in the presence of an electromagnetic field invariant with respect to the group Gr:

1√−g
(
√
−gFij),j = 0. (13)

The metric tensor is defined by relations (1), and the electromagnetic potential is
defined by relations (7). When i = 0, from the set of Equation (13), it follows that

1√−g
(
√
−ggαβF0β)α =

1
l
(llα

a ηabα̇b),α = ηabρaα̇b = 0. (14)
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Here, we denote g = −det ||gαβ|| = −(ηl)2, where η2 = det ||ηαβ||, l = det ||la
α||,

and ρa = lα
a,α + l|a/l; the dots mean the time derivatives. Let i = α. Then, from

Equation (13), it follows:

1
η
(ηgαβF0β),0 =

1
l
(lgνβgαγFβγ),ν ⇒

1
η
(ηηablα

a α̇b),0 =
1
l
(llν

a lβ
b ηablα

ã lγ

b̃
η ãb̃Fβγ),ν ⇒ (15)

(ηηabα̇b),0 =
ηla

α

l
(llβ

b lα
ã1

lγ

b̃
Fβγ)|a1

ηa1bη ãb̃. (16)

Let us find the components of Fαβ, using the relations (8).

Fαβ = (la
β,α − la

β,α)αa = lc
βlγ

c ld
α lν

d(l
a
γ,ν − la

ν,γ)αa = lb
βla

αlc
γ(l

γ
a|b − lγ

b|a)αc = lb
βla

αCc
baαc. (17)

Then,
(lFαβ),β = ηabη ãb̃Cd

b̃bαd((llα
a )|ã + llα

a lγ
ã,γ). (18)

The structural constants of a group G3 can be present in the form:

Cc
ab = Cc

12ε12
ãb̃ + Cc

13ε13
ãb̃ + Cc

23ε23
ãb̃, εAB

ab = δA
a δB

b − δA
b δB

a . (19)

Using the notations

σ1 = Ca
23αa, σ2 = Ca

31αa, σ3 = Ca
12αa,

γ1 = σ1η11 + σ2η12 + σ3η13, γ2 = σ1η12 + σ2η22 + σ3η23, γ3 = σ1η13 + σ2η23 + σ3η33,

let us reduce Maxwell’s equations (13) to the form:

η(ηabα̇b),0 = δa
1(γ1(C1

32)− γ2(C1
31 + ρ3) + γ3(C1

21 + ρ2)) + δa
2(γ1(C2

32 + ρ3)+ (20)

γ2C2
13 − γ3(C2

12ρ1)) + δa
3(−γ1(C3

23 + ρ2) + γ2(C3
13 + ρ1) + γ3C3

21).

The order of Equation (20) can be decreased by introducing a new independent function:

βa = βa = ηηabα̇b ⇒ ηα̇a = ηabβb. (21)

Let us consider the Maxwell equations for the group G3(IX). In this case, the nonzero
structural constants are as follows:

C3
12 = C2

31 = C1
23 = 1.

The functions σa and γ1 have the form

σ1 = α1, σ2 = α2, σ3 = α3.

γ1 = α1η11 + α2η12 + α3η13, γ2 = α1η12 + α2η22 + α3η23, γ1 = α1η13 + α2η23 + α3η33.

Using these relations, we obtain Maxwell’s Equations (14) and (20) as a system of
linear algebraic equations on the unknown functions nab:

nab =
ηab
η
⇒ η =

1
det nab

. (22)

Ŵn̂ = ω̂, (23)
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where

Ŵ =



α1 α2 α3 0 0 0
β1 β2 β3 0 0 0
0 α1 0 α2 α3 0
0 β1 0 β2 β3 0
0 0 α1 0 α2 α3
0 0 β1 0 β2 β3

, (24)

n̂T = (n11, n12, n13, n22, n23, n33); ω̂T = (−β̇1, α̇1,−β̇2, α̇2,−β̇3, α̇3).

Index T means the transposition of a matrix. Let us find the algebraic complement of
the matrix Ŵ:

V̂ =



β1V2
1 −α1V2

1 β2V2
1 −α2V2

1 β3V2
1 −α3V2

1
β1V1V2 −α1V1V2 β2V1V2 −α2V1V2 β3V1V2 −α3V1V2
β1V1V3 −α1V1V3 β2V1V3 −α2V1V3 β3V1V3 −α3V1V3
β1V2

2 −α1V2
2 β2V2

2 −α2V2
2 β3V2

2 −α3V2
2

β1V2V3 −α1V2V3 β2V2V3 −α2V2V3 β3V2V3 −α3V2V3
β1V2

3 −α1V2
3 β2V2

3 −α2V2
3 β3V2

3 −α3V2
3

. (25)

As Ŵ is a singular matrix, V̂ is the annulling matrix for Ŵ:

V̂Ŵ = 0. (26)

Therefore, one of the equations from the system (23) can be replaced by the equation:

δab(α̇aα̇b + β̇a β̇b)⇒ δab(αaαb + βaβb) = c2 = const. (27)

Depending on the rank of the matrix Ŵ, one or more functions nab are independent.
The remaining functions nab can be expressed through them and through the functions αa
and βa. For classification, it is necessary to find non-equivalent solutions of the system (23).
Obviously, this system is symmetric with respect to the transposition lα

1 ↔ lα
2 . Therefore,

the reference indices a = 1 and a = 2 can be interchanged. Taking this observation into
account, let us consider all the non-equivalent options.

4. Solutions of Maxwell Equations

1. a1V1 6= 0⇒ the minor Ŵ12 and its inverse matrix Ω̂ = Ŵ−1
12 have the form:

Ŵ12 =


α2 α3 0 0 0
α1 0 α2 α3 0
β1 0 β2 β3 0
0 α1 0 α2 α3
0 β1 0 β2 β3

, (28)

Ω̂1 =



− V2
α1V1

− α3β2
α1V1

α2α3
α1V1

− α3β3
α1V1

α2
3

α1V1

− V3
α1V1

α2β2
α1V1

− α2
2

α1V1

α2β3
α1V1

− α2α3
α1V1

− V2
2

α1V2
1

(α3β1V1−α2β3V3)

α1V2
1

α3(α2V2−α1V1)

α1V2
1

− α3β3V2
α1V2

1

α2
2V2

α1V2
1

− V2V3
α1V2

1

α2β2V2
α1V2

1
− α2

2V2
α1V2

1
− α3β3V3

α1V2
1

α2
3V3

α1V2
1

− V2
3

α1V2
1

α2β2V3
α1V2

1
− α2

2V3
α1V2

1

(α3β2V3−α2β1V1)

α1V2
1

α2(α1V1−α3V3)

α1V2
1


. (29)

Then, the solution of Equation (23) can be represented as:

n̂1 = Ω̂1ω̂1, (30)
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where

n̂T
1 = (n12, n13, n22, n23, n33); ω̂T

1 = (−(β̇1 + α1n11),−β̇2, α̇2,−β3, α̇3).

Function n11, as well as the functions αa and βa are arbitrary functions of u0 that obey
condition (27).

2. α2V1 6= 0,⇒ α1 = 0⇒ the minor Ŵ−1
14 and its inverse matrix Ω̂2 = Ŵ−1

14 have
the form:

Ŵ14 =


α2 α3 0 0 0
β2 β3 0 0 0
0 0 α2 α3 0
0 0 0 α2 α3
0 β1 0 β2 β3

, Ω̂2 =



β3
V1

− α3
V1

0 0 0

− β2
V1

α2
V1

0 0 0
a2

3β1β2
α2V2

1
− α2

3β1
V2

1

1
α2
− α3β3

α2V1

a2
3

α2V1

− a3β1β2
V2

1

α2α3β1
V2

1
0 β3

V1
− a3

V1

a2β1β2
V2

1
− α2

2β1
V2

1
0 − β2

V1

α2
V1


. (31)

The solution of Equation (23) can be represented as:

n̂2 = Ω̂ω̂2, (32)

where
n̂T

2 = (n12, n13, n22, n23, n33);

ω̂2 = (−β̇1,−β1n11,−β̇2,−β̇3, α̇3).

Function n11, as well as the functions αa and βa are arbitrary functions of u0 that obey
condition (27).

3. a3V1 6= 0,⇒ a1 = a2 = 0 ⇒ the minor Ŵ−1
16 and its inverse matrix Ω̂3 = Ŵ−1

16
have the form:

Ŵ16 =


0 a3 0 0 0
β2 β3 0 0 0
0 0 0 a3 0
β1 0 β2 β3 0
0 0 0 0 a3

, Ω̂3 =



− β3
a3β2

1
β3

0 0 0
1
a3

0 0 0 0
β1β3
a3β2

2
− β1

β2
2
− β3

β2a3
1
β2

0

0 0 1
a3

0 0
0 0 0 0 1

a3


. (33)

Then, the solution of Equation (23) can be represented as:

n̂3 = Ω̂3ω̂3, (34)

where
n̂T

3 = (n12, n13, n22, n23, n33);

ω̂T
3 = (−β̇1,−β1n11,−β̇2, 0,−β̇3).

Function n11, as well as the functions α3 and βa are arbitrary functions of u0 that obey
condition (27).
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4. a1V3 6= 0 ⇒ V1 = V2 = 0; otherwise, we obtain a solution equivalent to
the previous ones. As V3 6= 0 ⇒ α3 = β3 = 0. The minor Ŵ62 and its inverse matrix
Ω̂4 = Ŵ−1

62 have the form:

Ŵ26 =


α1 α2 0 0 0
0 α1 0 a2 0
0 β1 0 β2 0
0 0 α1 0 α2
0 0 β1 0 β2

, Ω̂4 =



1
α1
− α2β2

α1V3

α2
2

α1V3
0 0

0 β2
V3

− α2
V3

0 0

0 0 0 β2
V3

− α2
V3

0 − β1
V3

α1
V3

0 0

0 0 0 − β1
V3

α1
V3


. (35)

Then, the solution of Equation (23) can be represented as:

n̂4 = Ω̂4ω̂4, (36)

where
n̂T

4 = (n11, n12, n13, n22, n23);

ω̂T
4 = (−β̇1,−β̇2, α̇2, 0, 0).

Function n33, as well as the functions α1, α2, and βa, are arbitrary functions of u0 that
obey the condition (27).

5. Va = 0. Let us represent the system of Maxwell equations in the form:

Q̂n̂I = ω̂I

were

Q̂ =



a1 a2 a3 0 0 0
0 a1 0 a2 a3 0
0 0 α1 0 a2 a3
β1 β2 β3 0 0 0
0 β1 0 β2 β3 0
0 0 β1 0 β2 β3

, (37)

ω̂I = (ω̂β, ω̂α); ω̂β = (ω1, ω3, ω5), ω̂α = (ω2, ω4, ω6)

n̂I = (n̂α, β̂α); n̂α = (n11, n12, n13), n̂β = (n22, n23, n33)

Let us consider all possible options.

(a) a1 6= 0⇒ βa =
αa β1

α1
. Maxwell’s equations will take the form:

ŴI n̂α = (ω̂β − Q̂1n̂β)⇒ n̂α = Ŵ−1
I (ω̂β − Q̂1n̂β),

β1ŴI n̂α = α1ω̂α − β1Q̂1n̂β ⇒ β1ω̂β − α1ω̂α = 0⇒


α1α̇2 + β1 β̇2 = 0,
α1α̇3 + β1 β̇3 = 0,
α1α̇1 + β1 β̇1 = 0.

(38)

Here:

ŴI =

a1 a2 a3
0 a1 0
0 0 α1

, Ŵ−1
I =


1
a1
− a2

a2
1
− a3

a2
1

0 1
a1

0
0 0 1

a1

, Q̂I =

 0 0 0
a2 a3 0
0 a2 a3,


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From the last equation of the system (38) it follows:

a1 = e sin ϕ, β1 = e cos ϕ, e = const,

Thus, β2 = α2
cos ϕ
sin ϕ , β3 = α3

cos ϕ
sin ϕ , and from the previous equations it follows:

αa = eca sin ϕ, βa = eca cos ϕ, e, ca = const, c1 = 1.

Then matrices ŴI , Ŵ−1
I , Q̂I and lines ω̂T take the form:

ŴI = sin ϕŵ, Ŵ−1
I =

1
sin ϕ

ŵ−1, Q̂I = sin ϕq̂.

ŵ =

1 c2 c3
0 1 0
0 0 1

, ŵ−1 =

1 −c2 −c3
0 1 0
0 0 1

, q̂ =

 0 0 0
c2 c3 0
0 c2 c3,


ω̂T

β = ϕ̇ĈT = ϕ̇ sin ϕ(c2, 1, c3),

The solution of Maxwell’s equations can be represented as:

n̂α = ŵ−1(ϕ̇ĈT − q̂n̂β)

Functions n22, n23, and n33, as well as the function ϕ, are arbitrary functions of u0.

(b) Va = 0, α3 6= 0. The solutions, which are not equivalent to the previous ones, can
be obtained under the conditions a1 = a2 = 0⇒ β1 = β2 = 0. From Maxwell’s equations
it follows:

α3n13 = α3n23 = 0, a3n33 = −β̇3, β3n33 = α̇3 ⇒ a3 ȧ3 + β3 β̇3 = 0.

The solution has the form:

n33 = ϕ̇, n13 = n23 = α1 = α2 = β1 = β2 = 0, a3 = c cos ϕ, β3 = c sin ϕ.

Functions ϕ, n11, n12, n22 - are arbitrary functions on u0.

5. Conclusions

It is known that homogeneous spaces of IV and IX types according to the Bianchi
classification include as special cases the spaces of constant curvature. Hence, they receive
special interest in cosmology. In the universe with the metric of homogeneous space, all
physical fields are invariant with respect to the group of motions of the spacetime. There-
fore, these exact fields should be considered first when solving the self-consistent Einstein
equations, in particular, the Einstein–Maxwell equations. The final goal of the classifica-
tion of PSS with admissible electromagnetic fields is to enumerate all the electrovacuum
solutions of the Einstein–Maxwell equations. In [40,41], the complete classification of the
vacuum solutions of the Maxwell equations for homogeneous spaces with solvable groups
of motions was carried out. In the present paper, the same problem was solved for HPSS of
IX-type. For the final decision of the first stage of the classification problem, it remains to
consider the HPSS VII I-type, which will be detailed in the next paper. The results obtained
will be used in the second stage for integration of the corresponding Einstein–Maxwell
equations.
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