Some Extended Results for Multivalued F-Contraction Mappings
Abstract
:1. Introduction and Preliminaries
- (F)
- For all with , we have
- (F)
- For every sequence , if
- (F)
- There is satisfying
- ()
- ()
- there exists the sequence , such that
- (i)
- if then
- (ii)
- if and then
2. Main Results
3. Homotopy Result
- (i)
- for all and ,
- (ii)
- there exist and , such that, for all
- (iii)
- for all , is lower semi-continuous on Δ.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Reich, S. Fixed points of contractive functions. Boll. Unione Mat. Ital. 1972, 5, 26–42. [Google Scholar]
- Reich, S. Fixed points in locally covex spaces. Math. Z. 1972, 125, 17–31. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef] [Green Version]
- Cosentino, M.; Jleli, M.; Samet, B.; Vetro, C. Solvability of integrodifferential problems via fixed point theory in b-metric spaces. Fixed Point Theory Appl. 2015, 2015, 70. [Google Scholar] [CrossRef] [Green Version]
- Durmaz, G.; Minak, G.; Altun, I. Fixed points of ordered F-contractions. Nonlinear Anal. Hacet. J. Math. Stat. 2016, 45, 15–21. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Yazidi, H. Modified F-contractions via α-admissible mappings and application to integral equations. Filomat 2017, 31, 1141–1148. [Google Scholar] [CrossRef]
- Sahin, H.; Altun, I.; Turkoglu, D. Two fixed point results for multivalued F-contractions on M-metric spaces. Rev. De La Real Academia De Cienc. Exactas Físicas Y Naturales. Ser. A. Matemáticas 2019, 113, 1839–1849. [Google Scholar] [CrossRef]
- Secelean, N.A. Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [Google Scholar] [CrossRef] [Green Version]
- Nadler, S.B. Multi-valued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Liu, S. Fixed point theorems for multi-valued contractive mappings and multi-valued mappings. Nonlinear Anal. Model. Control 2006, 317, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 2007, 334, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Mizoguchi, N.; Takahashi, W. Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Appl. 1989, 141, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Altun, I.; Mınak, G.; Dag, H. Multivalued F-contractions on complete metric space. J. Nonlinear Convex Anal. 2015, 16, 659–666. [Google Scholar]
- Basha, S.S.; Veeramani, P. Best approximations and best proximity pairs. Acta Sci. Math. 1977, 63, 289–300. [Google Scholar]
- Abkar, A.; Gabeleh, M. The existence of best proximity points for multivalued non-self-mappings. Rev. De La Real Acad. De Cienc. Físicas Y Naturales. Ser. A Matemáticas 2013, 107, 319–325. [Google Scholar] [CrossRef]
- Ahmadi, R.; Niknam, A.; Derafshpour, M. Best Proximity Theorems of Proximal Multifunctions. Fixed Point Theory 2021, 22, 3–14. [Google Scholar] [CrossRef]
- Altun, I.; Aslantas, M.; Sahin, H. Best proximity point results for p-proximal contractions. Acta Math. Hung. 2020, 162, 393–402. [Google Scholar] [CrossRef]
- Aslantas, M. A new contribution to best proximity point theory on quasi metric spaces and an application to nonlinear integral equations. Optimization 2022, 1–14. [Google Scholar] [CrossRef]
- Aslantas, M.; Sahin, H.; Altun, I. Best proximity point theorems for cyclic p-contractions with some consequences and applications. Nonlinear Anal. Model. Control 2021, 26, 113–129. [Google Scholar] [CrossRef]
- Reich, S. Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 1978, 62, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Sahin, H. Best proximity point theory on vector metric spaces. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 130–142. [Google Scholar] [CrossRef]
- Sahin, H.; Aslantas, M.; Altun, I. Feng–Liu type approach to best proximity point results for multivalued mappings. J. Fixed Point Theory Appl. 2020, 22, 11. [Google Scholar] [CrossRef]
- Sahin, H. A new type of F-contraction and their best proximity point results with homotopy application. Acta Appl. 2022, 179, 1–15. [Google Scholar] [CrossRef]
- Aslantas, M. Some best proximity point results via a new family of F-contraction and an application to homotopy theory. J. Fixed Point Theory Appl. 2021, 23, 1–20. [Google Scholar] [CrossRef]
- Altun, I.; Mınak, G.; Olgun, M. Fixed points of multivalued nonlinear F-contractions on complete metric spaces. Nonlinear Anal. Model. Control 2016, 21, 201–210. [Google Scholar] [CrossRef]
- Abbas, M.; Iqbal, H.; Petrusel, A. Fixed points for multivalued Suzuki type (θ,R)-contraction mapping with applications. J. Funct. Spaces 2019, 2019, 9565804. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Kumam, P. Common fixed point results for fuzzy mappings on complex-valued metric spaces with homotopy results. Symmetry 2019, 11, 61. [Google Scholar]
- O’Regan, D. Topological fixed point theory for compact multifunctions via homotopy and essential maps. Topol. Its Appl. 2019, 265, 106819. [Google Scholar] [CrossRef]
- Vetro, C.; Vetro, F. A homotopy fixed point theorem in 0-complete partial metric space. Filomat 2015, 29, 2037–2048. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahin, H.; Aslantas, M.; Nasir Nasir, A.A. Some Extended Results for Multivalued F-Contraction Mappings. Axioms 2023, 12, 116. https://doi.org/10.3390/axioms12020116
Sahin H, Aslantas M, Nasir Nasir AA. Some Extended Results for Multivalued F-Contraction Mappings. Axioms. 2023; 12(2):116. https://doi.org/10.3390/axioms12020116
Chicago/Turabian StyleSahin, Hakan, Mustafa Aslantas, and Ali Abdulkareem Nasir Nasir. 2023. "Some Extended Results for Multivalued F-Contraction Mappings" Axioms 12, no. 2: 116. https://doi.org/10.3390/axioms12020116
APA StyleSahin, H., Aslantas, M., & Nasir Nasir, A. A. (2023). Some Extended Results for Multivalued F-Contraction Mappings. Axioms, 12(2), 116. https://doi.org/10.3390/axioms12020116