Next Article in Journal
Describing Conditional Independence Statements Using Undirected Graphs
Previous Article in Journal
On the Method of Transformations: Obtaining Solutions of Nonlinear Differential Equations by Means of the Solutions of Simpler Linear or Nonlinear Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Note on Finite Dimensional Odd Contact Lie Superalgebra in Prime Characteristic

School of Mathematics and Statistics, Liaoning University, Shenyang 110036, China
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(12), 1108; https://doi.org/10.3390/axioms12121108
Submission received: 10 October 2023 / Revised: 24 November 2023 / Accepted: 24 November 2023 / Published: 8 December 2023
(This article belongs to the Section Algebra and Number Theory)

Abstract

:
Over a field of characteristic p > 3 , let K O ( n , n + 1 ; t ̲ ) denote the odd contact Lie superalgebra. In this paper, the super-biderivations of odd Contact Lie superalgebra K O ( n , n + 1 ; t ̲ ) are studied. Let T K O be a torus of K O ( n , n + 1 ; t ̲ ) , which is an abelian subalgebra of K O ( n , n + 1 ; t ̲ ) . By applying the weight space decomposition approach of K O ( n , n + 1 ; t ̲ ) with respect to T K O , we show that all skew-symmetric super-biderivations of K O ( n , n + 1 ; t ̲ ) are inner super-biderivations.
MSC:
17B05; 17B40; 17B50

1. Introduction

Over a field of characteristic p = 0 , the theory of Lie superalgebras has had noticeable development in recent years [1,2,3,4,5]. For example, one author classified the finite dimensional simple Lie superalgebras and infinite-dimensional simple linearly compact Lie superalgebras [1,2]. Nevertheless, there is an open problem about the complete classification of the finite-dimensional simple modular Lie superalgebras (i.e., Lie superalgebras over a field of prime characteristic) [6]. In the last decade, there has been notable development in the study of modular Lie superalgebras, especially in the structures and representations of simple modular Lie superalgebras of Cartan type. The eight families of finite-dimensional simple modular Lie superalgebras W , S , H , K , H O , K O , S H O , and S K O are discussed in [7,8,9,10,11]. The superderivation algebras, second cohomologies, filtrations, and representations of the eight families of finite-dimensional Cartan-type simple modular Lie superalgebras have also been investigated (see [11,12,13], for example).
As is well known, the study of derivations is very active because of their importance in Lie algebras and Lie superalgebras. With further research about the theory of derivations, it is therefore natural to begin the investigations of biderivations and commuting maps on Lie algebras [14,15,16,17,18,19,20]. The research of biderivations goes back to the investigation of the commuting mapping in the associative ring, which showed that all biderivations on commutative prime rings were inner [21]. In particular, the notations of super-biderivations and skew-symmetric super-biderivations was introduced in [22,23]. The skew-symmetric super-biderivations of any perfect and centerless Lie algebras or Lie superalgebras were proved to be inner in [24]. Meanwhile, applications for and results on biderivations and super-biderivations of simple Lie superalgebras arose in [25]. For example, based on the theory related to super-biderivations, the authors obtained commutative post-Lie superalgebra structures [26]. The skew-symmetric super-biderivations of generalized Witt Lie superalgebra W ( m , n ; t ̲ ) were proved to be inner in [27]. In [28], there were similar results for contact Lie superalgebra K ( m , n ; t ̲ ) .
This paper is devoted to studying the super-biderivations of odd contact Lie superalgebra K O ( n , n + 1 ; t ̲ ) . And this essay is structured as follows. In Section 2, we review the basic definitions concerning K O ( n , n + 1 ; t ̲ ) . In Section 3, we get several useful conclusions concerning the skew-symmetric super-biderivations on Lie superalgebras. We use the method of the weight space decomposition of K O ( n , n + 1 ; t ̲ ) with respect to T K O to prove that all skew-symmetric super-biderivation of K O ( n , n + 1 ; t ̲ ) are inner in Section 4 (Theorem 1). Finally, we summarize the important findings in Section 5.

2. Preliminaries

The fundamental notations concerning the odd contact Lie superalgebras K O ( n , n + 1 ; t ̲ ) are reviewed in this section [22].
F denotes an algebraically closed field of characteristic p > 3 , and we all work on field F . Let Z 2 = { 0 ¯ , 1 ¯ } be the additive group of modular 2. For a vector superspace Q = Q 0 ¯ Q 1 ¯ , the symbol d ( x ) = α means the parity of a homogeneous element x Q α , α Z 2 . Let Q = i Z Q i be a Z-graded vector space. Write Zd ( x ) = i for the Z-degree of a Z-homogeneous element x Q i , i Z . Throughout this paper, we should mention that once the symbol d ( x ) ( Zd ( x ) ) appears, it signifies that x is a Z 2 -homogeneous (Z-homogeneous) element.
Let N be the set of positive integers and N 0 be the set of non-negative integers. Given n N , n > 2 . For two n-tuple α = ( α 1 , α 2 , , α n ) N 0 n and β = ( β 1 , β 2 , , β n ) N 0 n , we write α β = i = 1 n α i β i . Over the field F , we call B ( n ) a divided power algebra with generators { x ( α ) | α N 0 n } . For ε i = ( δ i 1 , δ i 2 , , δ i n ) N 0 n , where δ i j is the Kronecker symbol, we abbreviate x ( ε i ) as x i , i = 1 , 2 , , n . We call Λ ( n + 1 ) the Grassmann superalgebra with generators x i , i = n + 1 , , 2 n + 1 . Furthermore, we write Λ ( n , n + 1 ) for the tensor product B ( n ) Λ ( n + 1 ) .
For g B ( n ) and f Λ ( n + 1 ) , we simply write g f as g f . The formulas hold for Λ ( n , n + 1 ) as follows:
x ( α ) x ( β ) = α + β α x ( α + β ) , α , β N 0 n , x i x j = x j x i , i , j { n + 1 , , 2 n + 1 } , x ( α ) x j = x j x ( α ) , α N 0 n , j { n + 1 , , 2 n + 1 } .
For k = { 1 , , n + 1 }, we set
B k : = i 1 , i 2 , , i k n + 1 i 1 < i 2 < < i k 2 n + 1
and B : = k = 0 n + 1 B k , B ¯ : = { u B | 2 n + 1 B } , where B 0 = . For u = i 1 , i 2 , , i k B k , set | u | = k and
u = k , 2 n + 1 B k , k + 1 , 2 n + 1 B k ,
and x u = x i 1 x i 2 x i k . It is obvious that { x ( α ) x u α N 0 n , u B } is an F -basis of Λ ( n , n + 1 ) .
Obviously, Λ ( n , n + 1 ) is an associative superalgebra with a Z-gradation:
Λ ( n , n + 1 ) = Λ ( n , n + 1 ) 0 ¯ Λ ( n , n + 1 ) 1 ¯ ,
where Λ ( n , n + 1 ) 0 ¯ = B ( n ) Λ ( n + 1 ) 0 ¯ , Λ ( n , n + 1 ) 1 ¯ = B ( n ) Λ ( n + 1 ) 1 ¯ .
Let I 0 : = 1 , 2 , , n , I 1 : = n + 1 , n + 2 , , 2 n + 1 and I : = I 0 I 1 . Put J 1 : = I 1 { 2 n + 1 } .
Let D 1 , D 2 , , D 2 n + 1 be the linear transformations of Λ ( n , n + 1 ) such that
D i ( x ( α ) x u ) = x ( α ε i ) x u , i I 0 , x ( α ) · x u / x i , i I 1 .
Then it is easy to see that D 1 , D 2 , , D 2 n + 1 are derivations of the superalgebra Λ ( n , n + 1 ) , and d ( D i ) = τ ( i ) , where
τ ( i ) = 0 ¯ , i I 0 , 1 ¯ , i I 1 .
Let
W ( n , n + 1 ) : = { i = 1 2 n + 1 a i D i a i Λ ( n , n + 1 ) , i I } .
Then W ( n , n + 1 ) is an infinite-dimension Lie superalgebra that is contained in Der ( Λ ( n , n + 1 ) ) and the following formula holds:
[ a D i , b D j ] = a D i ( b ) D j ( 1 ) d ( a D i ) d ( b D j ) b D j ( a ) D i ,
where a , b Λ ( n , n + 1 ) , i , j I .
Over the algebraically closed field F of characteristic p > 3 , we choose two n-tuples of positive integers t ̲ = ( t 1 , t 2 , , t n ) N 0 n and π = ( π 1 , π 2 , , π n ) N 0 n , where π i = p t i 1 for all i I 0 .
Let
Λ ( n , n + 1 , t ̲ ) : = span F { x ( α ) x u α A ( n , t ̲ ) , u B } ,
where A ( n , t ̲ ) = { α = ( α 1 , α 2 , , α n ) N 0 n 0 α i π i , i I 0 } .
Set
W ( n , n + 1 ; t ̲ ) : = { i = 1 2 n + 1 a i D i a i Λ ( n , n + 1 ; t ̲ ) , i I } .
Then W ( n , n + 1 ; t ̲ ) is a finite-dimensional simple Lie superalgebra. Note that W ( n , n + 1 ; t ̲ ) possesses a Z-graded structure:
W ( n , n + 1 ; t ̲ ) = i = 1 ξ 1 W ( n , n + 1 ; t ̲ ) i ,
by letting W ( n , n + 1 ; t ̲ ) i : = { x ( α ) x u D j | α | + | u | = i + 1 , j I } and ξ : = i = 1 n π i + n + 1 .
Put
i = i + n , i I 0 , i n , i J 1 .
We define the linear operator T K : Λ ( n , n + 1 ; t ̲ ) W ( n , n + 1 ; t ̲ ) as follows:
T K ( a ) : = l = 1 2 n ( ( 1 ) τ ( l ) d ( a ) ( D l ( a ) ) + ( 1 ) d ( a ) ( D 2 n + 1 ( a ) x l ) ) D l + ( l = 1 2 n x l D l ( a ) 2 a ) D 2 n + 1 .
Put
K O ( n , n + 1 ; t ̲ ) : = span F { T K ( a ) a Λ ( n , n + 1 ; t ̲ ) } .
For a , b Λ ( n , n + 1 ; t ̲ ) , the formula holds:
[ T K ( a ) , T K ( b ) ] = T K ( a , b ) ,
where a , b : = T K ( a ) ( b ) ( 1 ) d ( a ) 2 ( D 2 n + 1 ( a ) ( b ) ) is the Lie bracket in Λ ( n , n + 1 ; t ̲ ) .
Then it is easy to show that K O ( n , n + 1 ; t ̲ ) is a simple Lie superalgebra. And we call K O ( n , n + 1 ; t ̲ ) the odd contact Lie superalgebra. Moreover, the principal Z-graded is listed below:
K O ( n , n + 1 ; t ̲ ) = i = 2 ξ 2 K O ( n , n + 1 ; t ̲ ) i ,
where K O ( n , n + 1 ; t ̲ ) i = { T K ( x ( α ) x u ) | α | + u = i + 2 } . In particular,
K O ( n , n + 1 ; t ̲ ) 2 = F T K ( 1 ) .

3. The Notions of Super-Biderivation

The properties of super-biderivations on centerless super-Virasoro algebras were introduced in [22]. Our aim in this section is to introduce a more-general definition concerning super-biderivations of Lie superalgebras. In order to prove the main conclusions, we need some preparations.
G denotes a Lie algebra over an arbitrary field. A linear mapping D : G G is called a derivation if the following axioms are satisfied:
D ( [ x , y ] ) = [ D ( x ) , y ] + [ x , D ( y ) ] ,
for all x , y G . And we say a bilinear map ψ : G × G G is a biderivation if the following axioms are satisfied:
ψ ( x , [ y , z ] ) = [ ψ ( x , y ) , z ] + [ y , ψ ( x , z ) ] , ψ ( [ x , y ] , z ) = [ ψ ( x , z ) , y ] + [ x , ψ ( y , z ) ] ,
for all x , y , z G . Meanwhile, we say a biderivation ψ is a skew-symmetric biderivation if it satisfies
ψ ( x , y ) = ψ ( y , x )
for all x , y G . Specially, a bilinear map ψ λ : G × G G is an inner biderivation if it satisfies ψ λ ( x , y ) = λ [ x , y ] for all x , y G (see [22]).
L denotes a Lie superalgebra. Recall that a linear map D : L × L L is a superderivation of L if the following axiom is satisfied:
D ( [ x , y ] ) = [ D ( x ) , y ] + ( 1 ) d ( D ) d ( x ) [ x , D ( y ) ] ,
for all x , y L . Meanwhile, we write Der 0 ¯ ( L ) (resp. Der 1 ¯ ( L ) ) for the set of all superderivations of Z 2 -degree 0 ¯ (resp. 1 ¯ ) of L.
A Z 2 -homogeneous bilinear map φ with Z 2 -degree γ of L is a bilinear map such that φ ( L α , L β ) L α + β + γ for any α , β Z 2 . Specially, we say φ fits these criteria even if d ( φ ) = γ = 0 ¯ .
Definition 1.
A bilinear mapping φ : L × L L is a super-biderivation of L if the following axioms are satisfied:
φ ( [ x , y ] , z ) = [ x , φ ( y , z ) ] + ( 1 ) ( d ( z ) + d ( φ ) ) d ( y ) [ φ ( x , z ) , y ] ,
φ ( x , [ y , z ] ) = [ φ ( x , y ) , z ] + ( 1 ) ( d ( x ) + d ( φ ) ) d ( y ) [ y , φ ( x , z ) ] ,
for all Z 2 -homogeneous elements x , y , z L .
And we say a biderivation φ is a skew-symmetric biderivation if it satisfies:
φ ( x , y ) = ( 1 ) d ( x ) d ( y ) + ( d ( x ) + d ( y ) ) d ( φ ) φ ( y , x )
for all x , y L .
Denote by BDer γ ( L ) the set of all skew-symmetric super-biderivations of Z 2 -degree γ . It is obvious that
BDer L = BDer 0 ¯ L BDer 1 ¯ L .
Lemma 1.
Let φ λ : L × L L be a bilinear map with λ F . Then φ λ is a skew-symmetric super-biderivation on L if it satisfies φ λ ( x , y ) = λ [ x , y ] for all x , y L . This class of super-biderivations is called inner.
Proof. 
Obviously, it is easy to obtain that φ λ is an even bilinear map, i.e., d ( φ λ ) = 0 . By the skew-symmetry of Lie superalgebras, we have
φ λ ( x , y ) = ( 1 ) d ( x ) d ( y ) + d ( y ) d ( φ λ ) + d ( x ) d ( φ λ ) φ λ ( y , x )
for any x , y L .
Due to the definition of graded Jacobi identity [ [ x , y ] , z ] = [ x , [ y , z ] ] + ( 1 ) d ( z ) d ( y ) [ [ x , z ] , y ] , we have that
φ λ ( [ x , y ] , z ) = [ x , φ λ ( y , z ) ] + ( 1 ) ( d ( z ) + d ( φ λ ) ) d ( y ) [ φ λ ( x , z ) , y ]
for any x , y , z L .
Similarly, it follows that
φ λ ( x , [ y , z ] ) = [ φ λ ( x , y ) , z ] + ( 1 ) ( d ( x ) + d ( φ λ ) ) d ( y ) [ y , φ λ ( x , z ) ]
for any x , y , z L . □
Lemma 2.
Let φ be a skew-symmetric super-biderivation on L. Then for any x , y , u , v L , we have
[ φ ( x , y ) , [ u , v ] ] = ( 1 ) ( d ( y ) + d ( u ) ) d ( φ ) [ [ x , y ] , φ ( u , v ) ] .
Proof. 
Due to Definition 1, there are two different ways to compute φ ( [ x , u ] , [ y , v ] ) .
From Equation (2), we have
φ ( [ x , u ] , [ y , v ] ) = [ x , φ ( u , [ y , v ] ) ] + ( 1 ) ( d ( y ) + d ( v ) + d ( φ ) ) d ( u ) [ φ ( x , [ y , v ] ) , u ] = [ x , [ φ ( u , y ) , v ] ] + ( 1 ) ( d ( u ) + d ( φ ) ) d ( y ) [ x , [ y , φ ( u , v ) ] ] + ( 1 ) ( d ( y ) + d ( v ) + d ( φ ) ) d ( u ) [ [ φ ( x , y ) , v ] , u ] + ( 1 ) ( d ( y ) + d ( v ) + d ( φ ) ) d ( u ) + ( d ( x ) + d ( φ ) ) d ( y ) [ [ y , φ ( x , v ) ] , u ] .
According to Equation (3), one gets
φ ( [ x , u ] , [ y , v ] ) = [ φ ( [ x , u ] , y ) , v ] + ( 1 ) ( d ( x ) + d ( u ) + d ( φ ) ) d ( y ) [ y , φ ( [ x , u ] , v ) ] = [ [ x , φ ( u , y ) ] , v ] + ( 1 ) ( d ( y ) + d ( φ ) ) d ( u ) [ [ φ ( x , y ) , u ] , v ] + ( 1 ) ( d ( x ) + d ( u ) + d ( φ ) ) d ( y ) [ y , [ x , φ ( u , v ) ] ] + ( 1 ) ( d ( x ) + d ( u ) + d ( φ ) ) d ( y ) + ( d ( v ) + d ( φ ) ) d ( u ) [ y , [ φ ( x , v ) , u ] ] .
Comparing the two sides of the above two equations, we have that
[ φ ( x , y ) , [ u , v ] ] ( 1 ) ( d ( y ) + d ( u ) ) d ( φ ) [ [ x , y ] , φ ( u , v ) ] = ( 1 ) d ( v ) d ( u ) + d ( y ) d ( v ) + d ( y ) d ( u ) ( [ φ ( x , v ) , [ u , y ] ] ( 1 ) ( d ( v ) + d ( u ) ) d ( φ ) [ [ x , v ] , φ ( u , y ) ] ) .
And we set
f ( x , y ; u , v ) = [ φ ( x , y ) , [ u , v ] ] ( 1 ) ( d ( y ) + d ( u ) ) d ( φ ) [ [ x , y ] , φ ( u , v ) ] ,
f ( x , v ; u , y ) = [ φ ( x , v ) , [ u , y ] ] ( 1 ) ( d ( v ) + d ( u ) ) d ( φ ) [ [ x , v ] , φ ( u , y ) ] .
According to the above equation, it can be easily seen that
f ( x , y ; u , v ) = ( 1 ) d ( y ) d ( u ) + d ( v ) d ( u ) + d ( y ) d ( v ) f ( x , v ; u , y ) .
On the one hand, one goes
f ( x , y ; u , v ) = ( 1 ) d ( u ) d ( v ) f ( x , y ; v , u ) = ( 1 ) d ( u ) d ( v ) ( 1 ) d ( u ) d ( v ) + d ( y ) d ( v ) + d ( u ) d ( y ) f ( x , u ; v , y ) = ( 1 ) d ( u ) d ( y ) f ( x , u ; y , v ) .
On the other hand, it is easy to see that
f ( x , y ; u , v ) = ( 1 ) d ( u ) d ( v ) + d ( y ) d ( v ) + d ( u ) d ( y ) f ( x , v ; u , y ) = ( 1 ) d ( u ) d ( y ) ( 1 ) d ( u ) d ( v ) + d ( y ) d ( v ) + d ( u ) d ( y ) f ( x , v ; y , u ) = ( 1 ) d ( u ) d ( y ) f ( x , u ; y , v ) .
Hence, we get
f ( x , y ; u , v ) = f ( x , y ; u , v ) .
Due to char ( F ) 2 , we have that f ( x , y ; u , v ) = 0 . Furthermore, we obtain
[ φ ( x , y ) , [ u , v ] ] = ( 1 ) ( d ( y ) + d ( u ) ) d ( φ ) [ [ x , y ] , φ ( u , v ) ] .
Lemma 3.
If d ( x ) + d ( y ) = 0 ¯ for any x , y L , then we have
[ φ ( x , y ) , [ x , y ] ] = 0 .
Proof. 
By Lemma 2, it is easily seen that
[ φ ( x , y ) , [ x , y ] ] = ( 1 ) ( d ( y ) + d ( x ) ) d ( φ ) [ [ x , y ] , φ ( x , y ) ] .
Since d ( x ) + d ( y ) = 0 ¯ , we have
[ φ ( x , y ) , [ x , y ] ] = [ [ x , y ] , φ ( x , y ) ] = [ φ ( x , y ) , [ x , y ] ] .
Thus, we obtain [ φ ( x , y ) , [ x , y ] ] = 0 .
Lemma 4.
Let C L ( [ L , L ] ) be the centralizer of [ L , L ] . If [ x , y ] = 0 , then we have φ ( x , y ) C L ( [ L , L ] ) .
Proof. 
If [ x , y ] = 0 , for any u , v L , we obtain
[ φ ( x , y ) , [ u , v ] ] = ( 1 ) ( d ( y ) + d ( u ) ) d ( φ ) [ [ x , y ] , φ [ u , v ] ] = 0 .
So we get φ ( x , y ) C L ( [ L , L ] ) . □

4. Skew-Symmetric Super-Biderivations of KO ( n , n + 1 ; t ̲ )

In this section, we prove that all skew-symmetric super-biderivations of K O ( n , n + 1 ; t ̲ ) are inner. For simplicity, we write K O for K O ( n , n + 1 ; t ̲ ) . In order to prove the main theory, we need some preparations.
Set T K O = span F { T K ( x i x i ) i I 0 } . It is easy to see that T K O is an abelian subalgebra of K O . From Equation (1), for all T K ( x ( α ) x u ) K O , we have
[ T K ( x i x i ) , T K ( x ( α ) x u ) ] = ( δ ( i u ) α i ) T K ( x ( α ) x u ) ,
where
δ ( P ) = 1 , P is ture , 0 , P is false .
For fixed α N n and u B , we define a linear function ( α + u ) : T K O F by means of
( α + u ) T K ( x i x i ) = δ ( i u ) α i .
Therefore, K O has a weight-space decomposition with respect to T K O :
K O = ( α + u ) K O ( α + u ) ,
where
K O ( α + u ) = span F { T K ( x ( β ) x v ) K O [ T K ( x i x i ) , T K ( x ( β ) x v ) ] = ( δ ( i u ) α i ) T K ( x ( β ) x v ) , T K ( x i x i ) T K O , i I 0 } .
Not specifically, ϕ denotes a Z 2 -homogeneous skew-symmetric super-biderivation on K O in the proof below.
Lemma 5.
If [ x , y ] = 0 for x , y K O , we have ϕ ( x , y ) = 0 .
Proof. 
By applying Lemma 4, we obtain that ϕ ( x , y ) C ( K O ) . As K O is a simple Lie superalgebra, ϕ ( x , y ) = 0 . □
Lemma 6.
For T K ( x i x i ) and T K ( x ( α ) x u ) , we have
ϕ ( T K ( x i x i ) , T K ( x ( α ) x u ) ) K O ( α + u ) .
Proof. 
By applying Lemma 5, it is obvious that ϕ ( T K ( x i x i ) , T K ( x j x j ) ) = 0 for any i , j I 0 from [ T K ( x i x i ) , T K ( x j x j ) ] = 0 . Note that d ( T K ( x l x l ) ) = 0 ¯ for all i I 0 . For T K ( x ( α ) x u ) K O , one gets
( 1 ) ( d ( ϕ ) + d ( T K ( x i x i ) ) ) d ( T K ( x l x l ) ) [ T K ( x l x l ) , ϕ ( T K ( x i x i ) , T K ( x ( α ) x u ) ) ] = ϕ ( T K ( x i x i ) , [ T K ( x l x l ) , T K ( x ( α ) x u ) ] ) [ ϕ ( T K ( x i x i ) , T K ( x l x l ) ) , T K ( x ( α ) x u ) ] = ( δ ( l u ) α l ) ϕ ( T K ( x i x i ) , T K ( x ( α ) x u ) ) .
Lemma 7.
Let i , j I 0 , i j . Then the statements below hold:
( i ) K O ( ε i ) = K O ( ε i + 2 n + 1 ) = 0 α π , u B F T K ( ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) ;
( i i ) K O ( i ) = K O ( i + 2 n + 1 ) = 0 α π , u B F T K ( ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x i x u ) ;
( i i i ) K O ( ε i + j ) = 0 α π , u B F ( T K ( ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x j x u ) ,
where α l q ¯ denotes some integer, and α l q ¯ q ( mod p ) .
Proof. 
(i) We may choose a fixed element i I 0 . By applying (1), we can directly obtain that
[ T K ( x l x l ) , T K ( x ( ε i ) ) ] = δ l i T K ( x ( ε i ) ) ,
for any l I 0 . From Equation (4), we get
δ ( l u ) α l = δ l i ,
for any l I 0 . If l I 0 i , then δ ( l u ) α l 0 ( mod p ) . If l = i , it is easy to see that δ ( i u ) α i 1 ( mod p ) . Then we obtain the desired result.
( i i ) We also choose a fixed element i J 1 . A straightforward computation proves that
[ T K ( x l x l ) , T K ( x i ) ] = δ l i T K ( x i ) ,
for any l I 0 . Equation (4) then yields
δ ( l u ) α l = δ l i ,
for any l I 0 . If l I 0 { i } , it is easily seen that δ ( l u ) α l 0 ( mod p ) . If l = i , we have that δ ( i u ) α i 1 ( mod p ) . Then the assertion follows.
( i i i ) The proof is similar to (i) and ( i i ). □
Lemma 8.
For any i I { 2 n + 1 } , λ i F , we have
ϕ ( T K ( x i x i ) , T K ( x i ) ) = λ i [ T K ( x i x i ) , T K ( x i ) ] ,
where λ i depends on i.
Proof. 
(i) For i J 1 , according to Equality (6), one may assume that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = 0 α π , u B c ( α , u , i ) T K ( ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x i x u ) ,
where c ( α , u , i ) F . By Lemma 5, we have that
0 = ( 1 ) ( d ( ϕ ) + d ( T K ( x i x i ) ) ) d ( T K ( 1 ) ) ( ϕ ( T K ( x i x i ) , [ T K ( 1 ) , T K ( x i ) ] ) [ ϕ ( T K ( x i x i ) , T K ( 1 ) ) , T K ( x i ) ] ) = [ T K ( 1 ) , ϕ ( T K ( x i x i ) , T K ( x i ) ) ] = [ T K ( 1 ) , 0 α π , u B c ( α , u , i ) T K ( ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x i x u ) ] = 0 α π , u B c ( α , u , i ) T K ( 1 , ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x i x u ) .
So we can conclude that c ( α , u , i ) = 0 if 2 n + 1 u . Then, we may suppose that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = 0 α π , u B ¯ c ( α , u , i ) T K ( ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x i x u ) .
Putting k I { i , i } , we obtain
0 = ( 1 ) ( d ( ϕ ) + d ( T K ( x i x i ) ) ) d ( T K ( x k ) ) ( ϕ ( T K ( x i x i ) , [ T K ( x k ) , T K ( x i ) ] ) [ ϕ ( T K ( x i x i ) , T K ( x k ) ) , T K ( x i ) ] ) = [ T K ( x k ) , ϕ ( T K ( x i x i ) , T K ( x i ) ) ] = [ T K ( x k ) , 0 α π , u B ¯ c ( α , u , i ) T K ( ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x i x u ) ] = 0 α π , u B ¯ c ( α , u , i ) T K ( x k , ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x i x u ) ,
where c ( α , u , i ) F . Hence, c ( α , u , i ) = 0 if k u or α k 0 ¯ > 0 by calculating the above equation. Therefore, we assume that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = 0 α π c ( α , i ) T K ( x ( α i 0 ¯ ε i ) x i ) .
Since d ( T K ( x i x i ) ) + d ( T K ( x i ) ) = 0 ¯ for any i I 0 and Lemma 2, we have that
0 = [ ϕ ( T K ( x i x i ) , T K ( x i ) ) , [ T K ( x i x i ) , T K ( x i ) ] ] = [ [ T K ( x i x i ) , T K ( x i ) ] , ϕ ( T K ( x i x i ) , T K ( x i ) ) ] = [ T K ( x i ) , 0 α π c ( α , i ) T K ( x ( α i 0 ¯ ε i ) x i ) ] = 0 α π c ( α , i ) T K ( x i , x ( α i 0 ¯ ε i ) x i ) .
Based on computing the above equation, we deduce that c ( α , i ) = 0 if α i 0 ¯ > 0 . Then, we suppose that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = c ( i ) T K ( x i ) .
Put λ i : = c ( i ) . By the discussions above, for any i I 0 , one gets
ϕ ( T K ( x i x i ) , T K ( x i ) ) = λ i [ T K ( x i x i ) , T K ( x i ) ] ,
where λ i is dependent on i .
( i i ) According to Equality (5), for i I 0 , we may assume that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = 0 α π , u B c ( α , u , i ) T K ( ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) ,
where c ( α , u , i ) F . By Lemma 5, it is easily seen that
0 = ( 1 ) ( d ( ϕ ) + d ( T K ( x i x i ) ) ) d ( T K ( 1 ) ) ( ϕ ( T K ( x i x i ) , [ T K ( 1 ) , T K ( x i ) ] ) [ ϕ ( T K ( x i x i ) , T K ( 1 ) ) , T K ( x i ) ] ) = [ T K ( 1 ) , ϕ ( T K ( x i x i ) , T K ( x i ) ) ] = [ T K ( 1 ) , 0 α π , u B c ( α , u , i ) T K ( ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) ] = 0 α π , u B c ( α , u , i ) T K ( 1 , ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) .
A simple calculation shows that c ( α , u , i ) = 0 if 2 n + 1 u . Then, we may assume that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = 0 α π , u B ¯ c ( α , u , i ) T K ( ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) .
Setting k I { i , i } , one gets
0 = ( 1 ) ( d ( ϕ ) + d ( T K ( x i x i ) ) ) d ( T K ( x k ) ) ( ϕ ( T K ( x i x i ) , [ T K ( x k ) , T K ( x i ) ] ) [ ϕ ( T K ( x i x i ) , T K ( x k ) ) , T K ( x i ) ] ) = [ T K ( x k ) , ϕ ( T K ( x i x i ) , T K ( x i ) ) ] = [ T K ( x k ) , 0 α π , u B ¯ c ( α , u , i ) T K ( ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) ] = 0 α π , u B ¯ c ( α , u , i ) T K ( x k , ( l I 0 , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) .
By calculating the above equation, we have c ( α , u , i ) = 0 if α k 0 ¯ > 0 or k u . Then, we can suppose that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = 0 α π , u { i } c ( α , u , i ) T K ( ( h u x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) .
By Lemma 2, we have
λ i T K ( 1 ) = [ ϕ ( T K ( x i x i ) , T K ( x i ) ) , [ T K ( x i x i ) , T K ( x i ) ] ] = [ [ T K ( x i x i ) , T H ( x i ) ] , ϕ ( T K ( x i x i , T H ( x i ) ) ] = [ T K ( x i ) , 0 α π , u { i } c ( α , u , i ) T K ( ( h u x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) ] = 0 α π , u { i } c ( α , u , i ) T K ( x i , ( h u x ( ε h ) ) x ( α i 1 ¯ ε i ) x u ) .
Based on computing the above equation, we obtain that c ( α , u , i ) = 0 if i u or α i 1 ¯ > 1 . Then, we assume that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = c ( i ) T K ( x i ) .
Put λ i : = c ( i ) . By the discussions above, for any i I 0 , we conclude that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = λ i [ T K ( x i x i ) , T K ( x i ) ] ,
where λ i depends on i. And our assertion is affirmed. □
Lemma 9.
All Z 2 -homogeneous skew-symmetric super-biderivations of K O are even.
Proof. 
Due to Lemma 8, all Z 2 -homogeneous skew-symmetric super-biderivations of K O are even mapping. Since ϕ ( T K ( x i x i ) , T K ( x i ) ) and [ T K ( x i x i ) , T K ( x i ) ] have the same Z 2 -degree, the Z 2 -degree of ϕ is even. □
Lemma 10.
For T K ( x i x j ) , i , j I 0 , i j , we have
ϕ ( T K ( x i x i ) , T K ( x i x j ) ) = λ i [ T K ( x i x i ) , T K ( x i x j ) ] ,
where λ i F .
Proof. 
By virtue of Equality (7), we may assume that
ϕ ( T K ( x i x i ) , T K ( x i x j ) ) = 0 α π , u B c ( α , u , i , j ) T K ( ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x j x u ) .
It is easily seen that
0 = ϕ ( T K ( x i x i ) , [ T K ( 1 ) , T K ( x i x j ) ] ) [ ϕ ( T K ( x i x i ) , T K ( 1 ) ) , T K ( x i x j ) ] = [ T K ( 1 ) , ϕ ( T K ( x i x i ) , T K ( x i x j ) ) ] = [ T K ( 1 ) , 0 α π , u B c ( α , u , i , j ) T K ( ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x j x u ) ] = 0 α π , u B c ( α , u , i , j ) T K ( 1 , ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x j x u ) .
By a direct computation, we have that c ( α , u , i , j ) = 0 if 2 n + 1 u . Then, we may assume that
ϕ ( T K ( x i x i ) , T K ( x i x j ) ) = 0 α π , u B ¯ c ( α , u , i , j ) T K ( ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x j x u ) .
By Lemma 5, for k I { i , j , i , j } , one gets
0 = ϕ ( T K ( x i x i ) , [ T K ( x k ) , T K ( x i x j ) ] ) [ ϕ ( T K ( x i x i ) , T K ( x k ) ) , T K ( x i x j ) ] = [ T K ( x k ) , ϕ ( T K ( x i x i ) , T K ( x i x j ) ) ] = [ T K ( x k ) , 0 α π , u B ¯ c ( α , u , i , j ) T K ( ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x j x u ) ] = 0 α π , u B ¯ c ( α , u , i , j ) T K ( x k , ( l I 0 { i } , h u x ( α l 0 ¯ ε l ) x ( ε h ) ) x ( α i 1 ¯ ε i ) x j x u ) .
Hence, c ( α , u , i , j ) = 0 if α k 0 ¯ > 0 or k u by calculating the equation above. Then, we assume that
ϕ ( T K ( x i x i ) , T K ( x i x j ) ) = 0 α π , u { i } c ( α , i , j ) T K ( ( h u x ( ε h ) ) x ( α i 1 ¯ ε i ) x ( α j 0 ¯ ε j ) x j x u ) .
By Lemmas 2 and 10, we have
λ i T K ( x j ) = [ λ i [ T K ( x i x i ) , T K ( x i ) ] , [ T K ( x i x i ) , T K ( x i x j ) ] ] = [ ϕ ( T K ( x i x i ) , T K ( x i ) ) , [ T K ( x i x i ) , T K ( x i x j ) ] ] = [ [ T K ( x i x i ) , T K ( x i ) ] , ϕ ( T K ( x i x i ) , T K ( x i x j ) ) ] = [ T K ( x i ) , 0 α π , u { i } c ( α , i , j ) T K ( ( h u x ( ε h ) ) x ( α i 1 ¯ ε i ) x ( α j 0 ¯ ε j ) x j x u ) ] = 0 α π , u { i } c ( α , i , j ) T K ( x i , ( h u x ( ε h ) ) x ( α i 1 ¯ ε i ) x ( α j 0 ¯ ε j ) x j x u ) .
Based on computing the above equation, we have that c ( α , i , j ) = 0 if α i 1 ¯ > 1 , α j 0 ¯ > 0 or i u . So we suppose that
ϕ ( T K ( x i x i ) , T K ( x i x j ) ) = c ( i , j ) T K ( x i x j ) .
By Lemmas 2 and 8, we have
λ i T K ( x j ) = [ λ i [ T K ( x i x i ) , T K ( x i ) ] , [ T K ( x i x i ) , T H ( x i x j ) ] ] = [ ϕ ( T K ( x i x i ) , T K ( x i ) ) , [ T K ( x i x i ) , T K ( x i x j ) ] ] = [ [ T K ( x i x i ) , T K ( x i ) ] , ϕ ( T K ( x i x i ) , T K ( x i x j ) ) ] = c ( i , j ) T K ( x i , x i x j ) .
Thus, we conclude that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = λ i [ T K ( x i x i ) , T K ( x i x j ) ] .
Remark 1.
For i , j I 0 , i j , we have λ 1 = = λ n = = λ 2 n . Due to Lemmas 8 and 10, one gets
0 = [ ϕ ( T K ( x j x j ) , T K ( x j ) ) , [ T K ( x i x i ) , T K ( x i x j ) ] ] [ [ T K ( x j x j ) , T K ( x j ) ] , ϕ ( T K ( x i x i ) , T K ( x i x j ) ) ] = ( λ j λ i ) T K ( x i ) .
Thus, we deduce that λ i = λ j for i , j I 0 , i j . Set λ : = λ 1 = = λ n = = λ 2 n . By a direct computation, we can conclude that
ϕ ( T K ( x i x i ) , T K ( x i ) ) = λ [ T K ( x i x i ) , T K ( x i ) ] , ϕ ( T K ( x i x i ) , T K ( x i ) ) = λ [ T K ( x i x i ) , T K ( x i ) ] , ϕ ( T K ( x i x i ) , T K ( x i x j ) ) = λ [ T K ( x i x i ) , T K ( x i x j ) ] ,
where λ is dependent on neither i nor j.
Lemma 11.
For any T K ( x ( ε i ) x 2 n + 1 ) , i I 0 , we have that
ϕ ( T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ) = λ [ T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ] ,
Proof. 
By Lemmas 2 and 5, and Remark 1, for i I 0 , we have
[ ϕ ( T K ( x k x k ) , T K ( x k ) ) , [ T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ] ] [ [ T K ( x k x k ) , T K ( x k ) ] , ϕ ( T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ) ] = [ λ [ T K ( x k x k ) , T K ( x k ) ] , [ T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ] ] [ [ T K ( x k x k ) , T K ( x k ) ] , ϕ ( T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ) ] = [ T K ( x k ) , ϕ ( T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ) λ [ T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ] ] = 0 .
Since C K O ( K O 1 ) = K O 2 = F T K ( 1 ) , one gets
ϕ ( T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ) = λ [ T K ( x i x i ) , T K ( x ( ε i ) ) x 2 n + 1 ] + b T K ( 1 ) ,
where b F . By virtue of Lemma 7, it follows that K O 2 K O ( ε i + 2 n + 1 ) = 0 . So we obtain b = 0 . Furthermore, we conclude that
ϕ ( T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ) = λ [ T K ( x i x i ) , T K ( x ( ε i ) x 2 n + 1 ) ] .
Theorem 1.
Let K O be the odd contact Lie superalgebra over an algebraically closed field of characteristic p > 3 . Then, we have
BDer K O = IBDer K O .
Proof. 
By Lemma 2 and Remark 1, it is follows that
0 = [ ϕ ( T K ( x i x i ) , T K ( x i ) ) , [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ] ] [ [ T K ( x i x i ) , T K ( x i ) ] , ϕ ( T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ) ] = [ [ T K ( x i x i ) , T K ( x i ) ] , λ [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ] ] [ [ T K ( x i x i ) , T K ( x i ) ] , ϕ ( T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ) ] = [ T K ( x i ) , λ [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ] ϕ ( T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ) ]
for any T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) K O .
Because of C K O ( K O 1 ) = K O 2 = F T K ( 1 ) , we have
ϕ ( T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ) = λ [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ] + b T K ( 1 ) .
Due to Lemmas 2 and 11, it is easily seen that
0 = [ ϕ ( T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ) , [ T K ( x i x i ) , T K ( x i x 2 n + 1 ) ] ] [ [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ] , ϕ ( T K ( x i x i ) , T K ( x i x 2 n + 1 ) ) ] = [ λ [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ] + b T K ( 1 ) , [ T K ( x i x i ) , T K ( x i x 2 n + 1 ) ] ] [ [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ] , λ [ T K ( x i x i ) , T K ( x i x 2 n + 1 ) ] ] = [ λ [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ] + b T K ( 1 ) λ [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ] , [ T K ( x i x i ) , T K ( x i x 2 n + 1 ) ] ] = [ b T K ( 1 ) , T K ( x i x 2 n + 1 ) ] = ( 1 ) τ ( i ) 2 b T K ( x i ) .
Since T K ( x i ) 0 , we obtain b = 0 . Furthermore, we conclude that
ϕ ( T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ) = λ [ T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ]
for any T K ( x ( ι ) x s ) , T K ( x ( κ ) x t ) ) K O . Therefore, we prove that ϕ is an inner super-biderivation. □

5. Conclusions

In this section, we summarize the important findings.
Firstly, Definition 1 and Lemmas 2 and 3 are a more-general definition and properties for skew-symmetric super-biderivations. Meanwhile, they are very helpful tools to prove all skew-symmetric super-biderivations of K O are inner super-biderivations.
Thereafter, we obtain the weight space decomposition with respect to T K O . Lemmas 7–9 and Remark 1 show that λ is dependent on neither i nor j. Thus, we obtain Lemma 11.
Lastly, we prove that all skew-symmetric super-biderivations of K O ( n , n + 1 ; t ̲ ) are inner super-biderivations (Theorem 1) by the results above.

Author Contributions

X.X. contributed to the study conception and design. The first draft of the manuscript was written by Q.W. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding

This research was funded by the National Natural Science Foundation of China, grant number 11501274, and the Educational Department of Liaoning Province, China, grant numbers LJKMZ20220454 and LJKZ0096.

Data Availability Statement

All data generated or analysed during this study are included in this published article.

Conflicts of Interest

The authors have no relevant financial or non-financial interests to disclose.

References

  1. Kac, V.G. Lie superalgebras. Adv. Math. 1977, 26, 8–96. [Google Scholar] [CrossRef]
  2. Kac, V.G. Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv. Math. 1998, 139, 1–55. [Google Scholar] [CrossRef]
  3. Sun, H.Z.; Han, Q.Z. A survey of Lie superalgebras. Adv. Phys. (PRC) 1983, 1, 81–125. (In Chinese) [Google Scholar]
  4. Sun, H.Z.; Han, Q.Z. Lie Algebras, Lie Superalgebras and Their Applications in Physics; Peking Univ. Press: Beijing, China, 1999. (In Chinese) [Google Scholar]
  5. Scheunert, M. Theory of Lie Superalgebras; Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 1979; Volume 716. [Google Scholar]
  6. Leites, D. Towards classification of simple finite dimensional modular Lie superalgebras. J. Prime Res. Math. 2007, 3, 101–110. [Google Scholar]
  7. Fu, J.Y.; Zhang, Q.C.; Jiang, C.P. The Cartan-type modular Lie superalgebra KO. Commun. Algebra 2006, 34, 107–128. [Google Scholar] [CrossRef]
  8. Liu, W.D.; He, Y.H. Finite-dimensional special odd Hamiltonian superalgebras in prime characteristic. Commun. Contemp. Math. 2009, 11, 523–546. [Google Scholar] [CrossRef]
  9. Liu, W.D.; Zhang, Y.Z.; Wang, X.L. The derivation algebra of the Cartan-type Lie superalgebra HO. J. Algebra 2004, 273, 176–205. [Google Scholar] [CrossRef]
  10. Mu, Q.; Zhang, Y.Z. Infinite-dimensional modular special odd contact superalgebras. J. Pure Appl. Algebra 2010, 214, 1456–1468. [Google Scholar] [CrossRef]
  11. Zhang, Y.Z. Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic. Chin. Sci. Bull. 1997, 42, 720–724. [Google Scholar] [CrossRef]
  12. Shu, B.; Zhang, C.W. Restricted representations of the Witt superalgebras. J. Algebra 2010, 324, 652–672. [Google Scholar] [CrossRef]
  13. Guan, B.L.; Chen, L.Y. Derivations of the even part of contact Lie superalgebra. J. Pure Appl. Algebra 2012, 216, 1454–1466. [Google Scholar] [CrossRef]
  14. Chang, Y.; Chen, L.Y. Biderivations and linear commuting maps on the restricted Cartan-type Lie algebras W(n; 1 ̲ ) and S(n; 1 ̲ ). Linear Multilinear Algebra 2019, 67, 1625–1636. [Google Scholar] [CrossRef]
  15. Chang, Y.; Chen, L.Y.; Zhou, X. Biderivations and linear commuting maps on the restricted Cartan-type Lie algebras H(n; 1 ̲ ). Commun. Algebra 2019, 47, 1311–1326. [Google Scholar] [CrossRef]
  16. Chen, Z.X. Biderivations and linear commuting maps on simple generalized Witt algebras over a field. Electron. J. Linear Algebra 2016, 31, 1–12. [Google Scholar] [CrossRef]
  17. Han, X.; Wang, D.Y.; Xia, C.G. Linear commuting maps and biderivations on the Lie algebras W(a, b). J. Lie Theory 2016, 26, 777–786. [Google Scholar]
  18. Tang, X.M. Biderivations of finite-dimensional complex simple Lie algebras. Linear Multilinear Algebra 2018, 66, 250–259. [Google Scholar] [CrossRef]
  19. Wang, D.Y.; Yu, X.X.; Chen, Z.X. Biderivations of the parabolic subalgebras of simple Lie algebras. Commun. Algebra 2011, 39, 4097–4104. [Google Scholar] [CrossRef]
  20. Wang, D.Y.; Yu, X.X. Biderivations and linear commuting maps on the Schrödinger-Virasoro Lie algebra. Commun. Algebra 2013, 41, 2166–2173. [Google Scholar] [CrossRef]
  21. Brešar, M. Commuting maps: A survey. Taiwan J. Math. 2004, 8, 361–397. [Google Scholar]
  22. Fan, G.Z.; Dai, X.S. Super-biderivations of Lie superalgebras. Linear Multilinear Algebra 2017, 65, 58–66. [Google Scholar] [CrossRef]
  23. Xia, C.G.; Wang, D.Y.; Han, X. Linear super-commuting maps and super-biderivations on the super-Virasoro algebras. Commun. Algebra 2016, 44, 5342–5350. [Google Scholar] [CrossRef]
  24. Tang, M.L.; Meng, L.Y.; Chen, L.Y. Super-biderivations and linear super-commuting maps on the Lie superalgebras. Commun. Algebra 2020, 48, 5076–5085. [Google Scholar] [CrossRef]
  25. Yuan, J.X.; Tang, X.M. Super-biderivations of classical simple Lie superalgebras. Aequationes Math. 2018, 92, 91–109. [Google Scholar] [CrossRef]
  26. Dilxat, M.; Gao, S.L.; Liu, D. Super-biderivations and post-Lie superalgebras on some Lie superalgebras. arXiv 2022, arXiv:2206.05925. [Google Scholar] [CrossRef]
  27. Chang, Y.; Chen, L.Y.; Cao, Y. Super-biderivations of the generalized Witt Lie superalgebra W(m, n; t ̲ ). Linear Multilinear Algebra 2021, 69, 233–244. [Google Scholar] [CrossRef]
  28. Zhao, X.D.; Chang, Y.; Chen, X.Z.L.Y. Super-biderivations of the contact Lie superalgebra K(m, n; t ̲ ). Commun. Algebra 2020, 48, 3237–3248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Xu, X.; Wang, Q. A Note on Finite Dimensional Odd Contact Lie Superalgebra in Prime Characteristic. Axioms 2023, 12, 1108. https://doi.org/10.3390/axioms12121108

AMA Style

Xu X, Wang Q. A Note on Finite Dimensional Odd Contact Lie Superalgebra in Prime Characteristic. Axioms. 2023; 12(12):1108. https://doi.org/10.3390/axioms12121108

Chicago/Turabian Style

Xu, Xiaoning, and Qiyuan Wang. 2023. "A Note on Finite Dimensional Odd Contact Lie Superalgebra in Prime Characteristic" Axioms 12, no. 12: 1108. https://doi.org/10.3390/axioms12121108

APA Style

Xu, X., & Wang, Q. (2023). A Note on Finite Dimensional Odd Contact Lie Superalgebra in Prime Characteristic. Axioms, 12(12), 1108. https://doi.org/10.3390/axioms12121108

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop