A Fractional-Order Improved Quantum Logistic Map: Chaos, 0-1 Testing, Complexity, and Control
Abstract
:1. Introduction
2. A Fractional-Order Improved Quantum Logistic Map
3. Dynamical Analysis
3.1. Bifurcation Analysis, Lyapunov Exponent Spectrum, and Dynamical Map
3.2. 0-1 Test
4. Complexity and Entropy
4.1. Spectral Entropy
4.2. Approximate Entropy
5. Chaos Control
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- ν=0.9;β=4.5;r=19.8;r1=0.05;
- x(1)=0.05;y(1)=0.02;z(1)=0.05;
- for i=2:1:3000
- temp4=0;temp7=0;
- for j=2:1:i temp5=temp4+exp(gammaln(i−j+ν)−gammaln(i−j+1))*((−y(j−1)*exp(−2*β))+exp(−β)*r*((2−2*x(j−1))*y(j−1)−2*x(j−1)*z(j−1))−y(j−1)); temp8=temp7+exp(gammaln(i−j+ν)−gammaln(i−j+1))*((−z(j−1)*exp(−2*β))+exp(−β)*r*(2*(1−x(j−1))*z(j−1)−(2*x(j−1)*y(j−1))−x(j−1))−z(j−1));
- temp4=temp5;temp7=temp8;
- temp6=(1/gamma(ν))*temp5; temp9=(1/gamma(ν))*temp8;
- end
- if (0<x(i−1))&&(x(i−1)<0.2)
- x(i)=0.8+r*(x(i−1)−0)*(0.2−x(i−1))−r1*y(i−1);
- elseif (0.8<x(i−1))&&(x(i−1)<1)
- x(i)=0+r*(x(i−1)−0.8)*(1−x(i−1))−r1*y(i−1);
- end
- y(i)=y(1)+temp6; z(i)=z(1)+temp9;
- end
- figure;
- plot(x(100:3000),y(100:3000),’b.’,’markersize’,2);
- xlabel(‘x’);ylabel(‘y’);
- set(gca,’fontsize’,12,’FontName’,’Times new Roman’);
- set(get(gca,’XLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
- set(get(gca,’YLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
- figure;
- plot(y(100:3000),z(100:3000),’b.’,’markersize’,2);
- xlabel(‘y’);ylabel(‘z’);
- set(gca,’fontsize’,12,’FontName’,’Times new Roman’);
- set(get(gca,’XLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
- set(get(gca,’YLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
- figure;
- plot(z(100:3000),x(100:3000),’b.’,’markersize’,2);
- xlabel(‘z’);ylabel(‘x’);
- set(gca,’fontsize’,12,’FontName’,’Times new Roman’);
- set(get(gca,’XLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
- set(get(gca,’YLabel’),’FontName’,’Times new Roman’,’FontSize’,16);
References
- May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Munir, F.A.; Zia, M.; Mahmood, H. Designing multi-dimensional logistic map with fixed-point finite precision. Nonlinear Dyn. 2019, 97, 2147–2158. [Google Scholar] [CrossRef]
- Cánovas, J.; Muñoz-Guillermo, M. On the dynamics of the q-deformed logistic map. Phys. Lett. A 2019, 383, 1742–1754. [Google Scholar] [CrossRef]
- Goggin, M.; Sundaram, B.; Milonni, P. Quantum logistic map. Phys. Rev. A 1990, 41, 5705. [Google Scholar] [CrossRef]
- Petráš, I. Fractional-order systems. In Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 43–54. [Google Scholar]
- Varun Bose, C.B.S.; Udhayakumar, R. Existence of mild solutions for hilfer fractional neutral integro-differential inclusions via almost sectorial operators. Fractal Fract. 2022, 6, 532. [Google Scholar] [CrossRef]
- Kumar, V.; Malik, M. Existence, stability and controllability results of fractional dynamic system on time scales with application to population dynamics. Int. J. Nonlin. Sci. Num. 2021, 22, 741–766. [Google Scholar] [CrossRef]
- Kumar, V.; Malik, M. Existence, uniqueness and stability of nonlinear implicit fractional dynamical equation with impulsive condition on time scales. Nonauton. Dyn. Syst. 2019, 6, 65–80. [Google Scholar] [CrossRef]
- Baba, I.A.; Rihan, F.A. A fractional–order model with different strains of COVID-19. Phys. A 2022, 603, 127813. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P.W. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 2009, 137, 981–989. [Google Scholar] [CrossRef]
- Abu-Saris, R.; Al-Mdallal, Q. On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 2013, 16, 613–629. [Google Scholar] [CrossRef]
- Mohan, J.J.; Deekshitulu, G.V.S.R. Fractional order difference equations. Int. J. Differ. Equ. 2012, 2012, 780619. [Google Scholar] [CrossRef] [Green Version]
- Wyrwas, M.; Mozyrska, D.; Girejko, E. Stability of discrete fractional-order nonlinear systems with the nabla caputo difference. IFAC Proc. 2013, 46, 167–171. [Google Scholar] [CrossRef]
- Edelman, M. Fractional maps and fractional attractors part I: α-families of maps. Discontin. Nonlinearity Complex. 2013, 1, 305–324. [Google Scholar] [CrossRef]
- Edelman, M. Fractional maps and fractional attractors part II: Fractional difference α-families of maps. Discont. Nonlinearity Complex. 2015, 4, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.C.; Baleanu, D. Discrete fractional logistic map and its chaos. Nonlinear Dyn. 2014, 75, 283–287. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Discrete chaos in fractional delayed logistic maps. Nonlinear Dyn. 2015, 80, 1697–1703. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Commun. Nonlinear Sci. Numer. Simulat. 2015, 22, 95–100. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Hao, J.L.; Wang, X.Y. An efficient image encryption scheme based on S-boxes and fractional-order differential logistic map. IEEE Access 2020, 8, 54175–54188. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.; Wang, X.; Pham, V.T.; Boulaaras, S.; Momani, S. Bifurcation and chaos in the fractional form of Hénon-Lozi type map. Eur. Phys. J. Spec. Top. 2020, 229, 2261–2273. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Xia, T.; Wang, Y.P. Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem. Chin. Phys. B 2018, 27, 030502. [Google Scholar] [CrossRef]
- Wang, L.; Sun, K.; Peng, Y.; He, S. Chaos and complexity in a fractional-order higher-dimensional multicavity chaotic map. Chaos Soliton. Fract. 2019, 131, 109488. [Google Scholar] [CrossRef]
- Jafari, S.; Pham, V.T.; Golpayegani, S.M.R.H.; Moghtadaei, M.; Kingni, S.T. The relationship between chaotic maps and some chaotic systems with hidden attractors. Int. J. Bifurcat. Chaos 2016, 26, 1650211. [Google Scholar] [CrossRef]
- Cui, L.; Luo, W.H.; Ou, Q.L. Analysis and implementation of new fractional-order multi-scroll hidden attractors. Chin. Phys. B 2021, 30, 020501. [Google Scholar] [CrossRef]
- Chowdhury, S.N.; Ghosh, D. Hidden attractors: A new chaotic system without equilibria. Eur. Phys. J. Spec. Top. 2020, 229, 1299–1308. [Google Scholar] [CrossRef]
- Jafari, S.; Sprott, J.C.; Nazarimehr, F. Recent new examples of hidden attractors. Eur. Phys. J. Spec. Top. 2015, 224, 1469–1475. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V. Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurcat. Chaos 2013, 23, 1330002. [Google Scholar] [CrossRef] [Green Version]
- Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I. Hidden attractor in smooth Chua systems. Phys. D 2012, 241, 1482–1486. [Google Scholar] [CrossRef]
- Leonov, G.A.; Kuznetsov, N.V.; Vagaitsev, V.I. Localization of hidden Chua’s attractors. Phys. Lett. A 2011, 375, 2230–2233. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Luo, X.; Zhou, Y. Existence results for nonlinear fractional difference equation. Adv. Differ. Equ. 2011, 2011, 713201. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Momani, S.; Pham, V.T.; El-Khazali, R. Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control. Chin. Phys. B 2020, 29, 050504. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Ouannas, A.; Boulaaras, S.; Pham, V.T.; Azar, A.T. A fractional map with hidden attractors: Chaos and control. Eur. Phys. J. Spec. Top. 2020, 229, 1083–1093. [Google Scholar] [CrossRef]
- Sun, K.H.; Liu, X.; Zhu, C.X. The 0-1 test algorithm for chaos and its applications. Chin. Phys. B 2010, 19, 110510. [Google Scholar] [CrossRef]
- Staniczenko, P.P.A.; Lee, C.F.; Jones, N.S. Rapidly detecting disorder in rhythmic biological signals: A spectral entropy measure to identify cardiac arrhythmias. Phys. Rev. E 2009, 79, 011915. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chu, Y.; Liu, X.; Zhang, J. Control discrete (hyper-)chaotic system using improved wavelet functions. J. Huazhong Univ. Sci. Tech. 2009, 37, 72–74. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Ye, X.; Wang, G.; Huang, Z.; Zhang, C. A Fractional-Order Improved Quantum Logistic Map: Chaos, 0-1 Testing, Complexity, and Control. Axioms 2023, 12, 94. https://doi.org/10.3390/axioms12010094
Xu B, Ye X, Wang G, Huang Z, Zhang C. A Fractional-Order Improved Quantum Logistic Map: Chaos, 0-1 Testing, Complexity, and Control. Axioms. 2023; 12(1):94. https://doi.org/10.3390/axioms12010094
Chicago/Turabian StyleXu, Birong, Ximei Ye, Guangyi Wang, Zhongxian Huang, and Changwu Zhang. 2023. "A Fractional-Order Improved Quantum Logistic Map: Chaos, 0-1 Testing, Complexity, and Control" Axioms 12, no. 1: 94. https://doi.org/10.3390/axioms12010094
APA StyleXu, B., Ye, X., Wang, G., Huang, Z., & Zhang, C. (2023). A Fractional-Order Improved Quantum Logistic Map: Chaos, 0-1 Testing, Complexity, and Control. Axioms, 12(1), 94. https://doi.org/10.3390/axioms12010094