Functional Epistemology “Nullifies” Dyson’s Rebuttal of Perturbation Theory
Abstract
:1. Functional Epistemology
2. Euler’s Series of 1760 and Its Multiple Representations
- (i)
- A convergent Maclaurin series (Ramanujan found a series which converges even more rapidly) solution (4) based on the Stieltjes function;
- (ii)
- (iii)
- (iv)
- (v)
3. Quantum Field Theoretical Perturbation Series Need Not Diverge
4. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stace, W.T. The Refutation of Realism. Mind 1934, 43, 145–155. [Google Scholar] [CrossRef]
- Parsons, C. Platonism and Mathematical Intuition in Kurt Gödel’s Thought. Bull. Symb. Log. 1995, 1, 44–74. [Google Scholar] [CrossRef] [Green Version]
- Burgess, J.P.; Rosen, G. A Subject with No Object; Oxford University Press: Oxford, UK, 1999. [Google Scholar] [CrossRef]
- Turing, A.M. Intelligent Machinery. In Cybernetics. Key Papers; Evans, C.R., Robertson, A.D.J., Eds.; Butterworths: London, UK, 1968; pp. 27–52. [Google Scholar]
- Halmos, P.R. Naive Set Theory; Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 1974. [Google Scholar] [CrossRef]
- Hrbacek, K.; Jech, T. Introduction to Set Theory, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar] [CrossRef]
- Suppes, P. The Transcendental Character of Determinism. Midwest Stud. Philos. 1993, 18, 242–257. [Google Scholar] [CrossRef]
- Specker, E. Der Satz vom Maximum in der rekursiven Analysis. In Constructivity in Mathematics: Proceedings of the Colloquium Held at Amsterdam, 1957; Heyting, A., Ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1959; pp. 254–265. [Google Scholar] [CrossRef]
- Specker, E. Selecta; Birkhäuser Verlag: Basel, Switzerland, 1990. [Google Scholar] [CrossRef]
- Kreisel, G. A notion of mechanistic theory. Synthese 1974, 29, 11–26. [Google Scholar] [CrossRef]
- Calude, C.S.; Dinneen, M.J. Exact Approximations of Omega Numbers. Int. J. Bifurc. Chaos 2007, 17, 1937–1954. [Google Scholar] [CrossRef]
- Yanofsky, N.S. Paradoxes, Contradictions, and the Limits of Science. Am. Sci. 2016, 104, 166. [Google Scholar] [CrossRef]
- Moore, C.D. Unpredictability and undecidability in dynamical systems. Phys. Rev. Lett. 1990, 64, 2354–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, C.H. Undecidable dynamics. Nature 1990, 346, 606–607. [Google Scholar] [CrossRef]
- Svozil, K. Omega and the time evolution of the N-body problem. In Randomness and Complexity, from Leibniz to Chaitin; Calude, C.S., Ed.; World Scientific: Singapore, 2007; pp. 231–236. [Google Scholar] [CrossRef] [Green Version]
- Cubitt, T.S.; Perez-Garcia, D.; Wolf, M.M. Undecidability of the spectral gap. Nature 2015, 528, 207–211. [Google Scholar] [CrossRef] [Green Version]
- Rado, T. On Non-Computable Functions. Bell Syst. Tech. J. 1962, 41, 877–884. [Google Scholar] [CrossRef]
- Abbott, A.A.; Calude, C.S.; Svozil, K. Value-indefinite observables are almost everywhere. Phys. Rev. A 2014, 89, 032109. [Google Scholar] [CrossRef] [Green Version]
- Bretto, A. Hypergraph Theory; Mathematical Engineering; Springer: Cham, Switzerland, 2013; pp. xiv, 119. [Google Scholar] [CrossRef]
- Greechie, R.J. Orthomodular lattices admitting no states. J. Comb. Theory Ser. A 1971, 10, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Pitowsky, I. Infinite and finite Gleason’s theorems and the logic of indeterminacy. J. Math. Phys. 1998, 39, 218–228. [Google Scholar] [CrossRef]
- Hrushovski, E.; Pitowsky, I. Generalizations of Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem. Stud. Hist. Philos. Sci. Part Stud. Hist. Philos. Mod. Phys. 2004, 35, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.A.; Calude, C.S.; Svozil, K. A variant of the Kochen-Specker theorem localising value indefiniteness. J. Math. Phys. 2015, 56, 102201. [Google Scholar] [CrossRef] [Green Version]
- Heaviside, O. Electromagnetic Theory; “The Electrician” Printing and Publishing Corporation: London, UK, 1894–1912. [Google Scholar]
- Dyson, F.J. Divergence of Perturbation Theory in Quantum Electrodynamics. Phys. Rev. 1952, 85, 631–632. [Google Scholar] [CrossRef]
- Le Guillou, J.C.; Zinn-Justin, J. Large-Order Behaviour of Perturbation Theory; Current Physics-Sources and Comments; Elsevier: Amsterdam, The Netherlands, 1990; Volume 7. [Google Scholar]
- Vainshtein, A.I. Decaying Systems and Divergence of the Series of Perturbation Theory. In Continuous Advances in QCD 2002; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2002. [Google Scholar] [CrossRef]
- Wigner, E.P. The unreasonable effectiveness of mathematics in the natural sciences. Richard Courant Lecture delivered at New York University, May 11, 1959. Commun. Pure Appl. Math. 1960, 13, 1–14. [Google Scholar] [CrossRef]
- Landau, E. Über die Grundlagen der Theorie der Fakultätenreihen. Sitzungsberichte Bayer. Akad. Wiss. 1906, 36, 151–218, 482. [Google Scholar]
- Bleistein, N.; Handelsman, R.A. Asymptotic Expansions of Integrals; Dover Books on Mathematics: Dover, Delaware, 1975. [Google Scholar]
- Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M. Tenth-Order QED Contribution to the Electron g − 2 and an Improved Value of the Fine Structure Constant. Phys. Rev. Lett. 2012, 109, 111807. [Google Scholar] [CrossRef] [Green Version]
- Hanneke, D.; Fogwell, S.; Gabrielse, G. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant. Phys. Rev. Lett. 2008, 100, 120801. [Google Scholar] [CrossRef] [Green Version]
- Hanneke, D.; Fogwell Hoogerheide, S.; Gabrielse, G. Cavity control of a single-electron quantum cyclotron: Measuring the electron magnetic moment. Phys. Rev. A 2011, 83, 052122. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M. Complete Tenth-Order QED Contribution to the Muon g − 2. Phys. Rev. Lett. 2012, 109, 111808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keshavarzi, A.; Khaw, K.S.; Yoshioka, T. Muon g − 2: A review. Nucl. Phys. B 2022, 975, 115675. [Google Scholar] [CrossRef]
- Janka, G.; Ohayon, B.; Crivelli, P. Muonium Lamb shift: Theory update and experimental prospects. EPJ Web Conf. 2022, 262, 01001. [Google Scholar] [CrossRef]
- Bezginov, N.; Valdez, T.; Horbatsch, M.; Marsman, A.; Vutha, A.C.; Hessels, E.A. A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 2019, 365, 1007–1012. [Google Scholar] [CrossRef]
- Ohayon, B.; Janka, G.; Cortinovis, I.; Burkley, Z.; Borges, L.d.S.; Depero, E.; Golovizin, A.; Ni, X.; Salman, Z.; Suter, A.; et al. Precision Measurement of the Lamb Shift in Muonium. Phys. Rev. Lett. 2022, 128, 011802. [Google Scholar] [CrossRef]
- Boyd, J.P. The Devil’s Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series. Acta Appl. Math. 1999, 56, 1–98. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, C. Divergent series: Past, present, future. Math. Rep. C. R. Math. 2016, 38, 85–98. [Google Scholar]
- Flory, M.; Helling, R.C.; Sluka, C. How I Learned to Stop Worrying and Love QFT. arXiv 2012, arXiv:1201.2714. [Google Scholar]
- Costin, O. Asymptotics and Borel Summability; Monographs and Surveys in Pure and Applied Mathematics; Chapman & Hall/CRC; Taylor & Francis Group: Boca Raton, FL, USA, 2009; Volume 141. [Google Scholar]
- Zinn-Justin, J. Summation of divergent series: Order-dependent mapping. Appl. Numer. Math. 2010, 60, 1454–1464. [Google Scholar] [CrossRef] [Green Version]
- Costin, O.; Dunne, G.V. Convergence from divergence. J. Phys. A Math. Theor. 2017, 51, 04LT01. [Google Scholar] [CrossRef] [Green Version]
- Brüning, E.A.K. How to reconstruct an analytic function from its asymptotic expansion? Complex Var. Theory Appl. Int. J. 1996, 30, 199–220. [Google Scholar] [CrossRef]
- Euler, L. De seriebus divergentibus. Novi Comment. Acad. Sci. Petropolitanae 1760, 5, 205–237. Available online: https://scholarlycommons.pacific.edu/euler-works/247/ (accessed on 6 January 2023).
- Weniger, E.J. Summation of divergent power series by means of factorial series. Appl. Numer. Math. 2010, 60, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Number 55 in National Bureau of Standards Applied Mathematics Series; U.S. Government Printing Office: Washington, DC, USA, 1964; pp. xiv, 1046.
- Sloane, N.J.A. A001620 Decimal Expansion of Euler’s Constant (or the Euler-Mascheroni Constant), Gamma. (Formerly M3755 N1532). The On-Line Encyclopedia of Integer Sequences. 2019. Available online: https://oeis.org/A027642 (accessed on 17 July 2019).
- Pernice, S.A.; Oleaga, G. Divergence of perturbation theory: Steps towards a convergent series. Phys. Rev. D 1998, 57, 1144–1158. [Google Scholar] [CrossRef] [Green Version]
- Pittnauer, F. Vorlesungen über Asymptotische Reihen; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1972; Volume 301. [Google Scholar] [CrossRef]
- Remmert, R. Theory of Complex Functions, 1st ed.; Graduate Texts in Mathematics; Springer: New York, NY, USA, 1991; Volume 122. [Google Scholar] [CrossRef]
- Tao, T. Compactness and Contradiction; American Mathematical Society: Providence, RI, USA, 2013. [Google Scholar]
- Watson, G.N. The transformation of an asymptotic series into a convergent series of inverse factorials [Memoir crowned by the Danish Royal Academy of Science]. Rend. Circ. Mat. Palermo 1912, 34, 41–88. [Google Scholar] [CrossRef]
- Doetsch, G. Handbuch der Laplace-Transformation: Band II Anwendungen der Laplace-Transformation; Springer Basel AG (Birkhäuser): Basel, Switzerland, 1972. [Google Scholar] [CrossRef]
- Costin, O.; Costin, R.D. A new type of factorial series expansions and applications. arXiv 2016, arXiv:1608.01010. [Google Scholar] [CrossRef]
- Nielsen, N. Die Gammafunktion; AMS Chelsea Publishing: Bronx, New York, NY, USA, 1965. Reprint of “Handbuch der Theorie der Gammafunktion”, first published in 1906, and “Theorie des Integrallogarithmus und verwandter Transzendenten”, first published in 1906. [Google Scholar]
- Knoop, K. Theorie und Anwendung der Unendlichen Reihen; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar] [CrossRef]
- Dyson, F.J. The Radiation Theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 1949, 75, 486–502. [Google Scholar] [CrossRef]
- Bell, J.S. Against ‘measurement’. Phys. World 1990, 3, 33–41. [Google Scholar] [CrossRef]
- Berry, M.V.; Costin, O.; Costin, R.D.; Howls, C.J. Borel Plane Resurgence in Hyperasymptotics and Factorial Series, 2016. Talk at the Resurgence Meeting, presented by Ovidiu Costin on July 19, 2016. Available online: https://math.tecnico.ulisboa.pt/seminars/resurgence/?action=show&id=4371 (accessed on 7 July 2022).
- Costin, O. Exponential asymptotics, transseries, and generalized Borel summation for analytic, nonlinear, rank-one systems of ordinary differential equations. Int. Math. Res. Not. 1995, 1995, 377. [Google Scholar] [CrossRef]
- Edgar, G.A. Transseries for Beginners. Real Anal. Exch. 2009, 35, 253–310. [Google Scholar] [CrossRef]
- Baker, G.A.; Graves-Morris, P. Pad’e Approximants, 2nd ed.; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Aigner, M.; Ziegler, G.M. Proofs from THE BOOK, 4th ed.; Springer: Heidelberg, Germany, 1998–2010. [Google Scholar] [CrossRef]
- Kreisel, G. Kurt Gödel. 28 April 1906–14 January 1978. Biogr. Mem. Fellows R. Soc. 1980, 26, 148–224. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svozil, K. Functional Epistemology “Nullifies” Dyson’s Rebuttal of Perturbation Theory. Axioms 2023, 12, 72. https://doi.org/10.3390/axioms12010072
Svozil K. Functional Epistemology “Nullifies” Dyson’s Rebuttal of Perturbation Theory. Axioms. 2023; 12(1):72. https://doi.org/10.3390/axioms12010072
Chicago/Turabian StyleSvozil, Karl. 2023. "Functional Epistemology “Nullifies” Dyson’s Rebuttal of Perturbation Theory" Axioms 12, no. 1: 72. https://doi.org/10.3390/axioms12010072
APA StyleSvozil, K. (2023). Functional Epistemology “Nullifies” Dyson’s Rebuttal of Perturbation Theory. Axioms, 12(1), 72. https://doi.org/10.3390/axioms12010072