Next Article in Journal
Stability for Weakly Coupled Wave Equations with a General Internal Control of Diffusive Type
Previous Article in Journal
A Joint Location–Allocation–Inventory Spare Part Optimization Model for Base-Level Support System with Uncertain Demands
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fuzzy Differential Subordination for Meromorphic Function Associated with the Hadamard Product

by
Sheza M. El-Deeb
1,2,† and
Alina Alb Lupaş
3,*,†
1
Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Buraidah 52211, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
3
Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2023, 12(1), 47; https://doi.org/10.3390/axioms12010047
Submission received: 6 November 2022 / Revised: 6 December 2022 / Accepted: 7 December 2022 / Published: 1 January 2023
(This article belongs to the Section Mathematical Analysis)

Abstract

:
This paper is related to fuzzy differential subordinations for meromorphic functions. Fuzzy differential subordination results are obtained using a new operator which is the combination Hadamard product and integral operator for meromorphic function.

1. Introduction, Preliminaries and Definitions

Assume that H Λ is the class of functions analytic in Λ = χ : χ C and χ < 1 and H c , j is the subclass of H Λ consisting of functions of the form
H c , j = F : F H Λ and F χ = c + a j χ j + a j + 1 χ j + 1 + , χ Λ .
and H 1 , 1 = H . For Λ C , we denote by H Ω the class of meromorphic function in Ω . For t N , denoted by Σ t the class of meromorphic function given by
Σ t : = F : F H Λ and F χ = 1 χ + j = t + 1 a j χ j χ Λ * = Λ \ 0 ; t N .
where Λ * is the punctured unit disc defined by
Λ * : = χ : χ C and 0 < χ < 1 .
In particular, we write Σ : = Σ 1 has the following form
F ( χ ) = 1 χ + j = 2 a j χ j ,
which are analytic and univalent in the punctured unit disc Λ *
The functions F Σ given by (3) and G Σ given by
G ( χ ) = 1 χ + j = 2 b j χ j ,
The Hadamard or convolution product of F and G is defined as follows
( F * G ) ( χ ) : = 1 χ + j = 2 a j b j χ j .
Let S Σ * and C Σ be the subclasses of Σ , which are meromorphic starlike and meromorphic convex in Λ * , respectively, and defined by
S Σ * : = F : F Σ and Re χ F χ F χ > 0 χ Λ * ,
and
C Σ : = F : F Σ and Re 1 + χ F χ F χ > 0 χ Λ * .
Definition 1
([1,2]). Let F 1 and F 2 be in H Λ . The function F 1 is subordinate to F 2 , or F 2 is superordinate to F 1 , if there exists a function ϖ analytic in Λ with ϖ 0 = 0 and ϖ χ < 1 χ Λ , such that F 1 χ = F 2 ϖ χ . Also, we write F 1 χ F 2 χ . If F 2 is univalent, then F 1 F 2 , if and only if F 1 0 = F 2 0 and F 1 Λ F 2 Λ .
We introduce definitions and propositions for fuzzy differential subordination:
Definition 2
([3]). Let Z be a nonempty set, then Y : Z [ 0 , 1 ] is fuzzy subset and a pair Y , Y Y , such that Y Y : Z [ 0 , 1 ] and
Y = x Z : 0 < Y K x 1 = sup K , Y K
is fuzzy set. A function Y Y is a function of the fuzzy set Y , Y Y .
Definition 3
([4]). Assuming that Y : C R + is a function such that
Y C χ = Y χ χ C .
Denote by
Y C C = χ : χ C and 0 < Y χ 1 : = S u p p C , Y C χ .
Also, we call the following subset:
Y C C = χ : χ C and 0 < Y χ 1 : = Λ Y 0 , 1 ,
the fuzzy unit disk.
Proposition 1
([5]). i If Y , Y Y = Λ , Y Λ , then we have Y = Λ, where Y = sup Y , Y Y and Λ = sup Λ , Y Λ .
i i If Y , Y Y Λ , Y Λ , then we have Y ⊆Λ, where Y = sup Y , Y Y and Λ = sup Λ , Y Λ .
Let F , G H Λ . We denote
F Λ = F χ : 0 < Y F Λ F χ 1 , χ Λ = sup F Λ , Y F Λ
and
G Λ = G χ : 0 < Y G Λ G χ 1 , χ Λ = sup G Λ , Y G Λ .
Definition 4
([5]). Let χ 0 Λ and F , G H Λ . The function F is fuzzy subordinate to G , written as F Y G or F χ Y G χ , when the followig conditions are satisfied:
i F χ 0 = G χ 0 i i Y F Λ F χ Y G Λ G χ , χ Λ .
Proposition 2
([5]). Assuming that χ 0 Λ and F , G H Λ . If F χ Y G χ , χ Λ , then
i F χ 0 = G χ 0 i i F Λ G Λ and Y F Λ F χ Y G Λ G χ , χ Λ ,
where F Λ and G Λ are defined by (7) and (8) respectively.
Definition 5
([6]). For Φ : C 3 × Λ C and H is an analytic function such that Φ c , 0 , 0 , 0 = H 0 = c . Assuming that p is analytic in * with p 0 = c and satisfies the second order fuzzy differential subordination
Y Ψ C 3 × Λ Ψ φ χ , χ φ χ , χ 2 φ χ ; χ Y H Λ H χ ,
i.e.,
Ψ φ χ , χ φ χ , χ 2 φ χ ; χ Y H χ .
then φ is a fuzzy solution of the fuzzy differential subordination.
A function q is a fuzzy dominant for the fuzzy differential subordination if
Y φ Λ φ χ Y q Λ q χ , i . e . , φ χ Y q χ , ζ Λ .
for all φ satisfying (9). A fuzzy dominant q ˜ satisfies that
Y q ˜ Λ q ˜ χ Y q Λ q χ , i . e . , q ˜ χ Y q χ , χ Λ .
for all fuzzy dominant q of (9) is the fuzzy best dominant of (9).
If F , G Σ has the form (3) and (4), we define the integral operator N m α : Σ Σ , with m > 0 , α 0 , by
N m 0 F * G ( χ ) : = F * G ( χ ) ,
and
N m α F * G ( χ ) : = m α Γ α χ m + 1 0 χ t m log χ t α 1 F * G ( t ) d t ,
where all the powers are at the principal value.
It can be easily verified that
N m α F * G ( χ ) = 1 χ + j = 2 m m + j + 1 α a j b j χ j , χ Λ * .
The extended operator J m α , μ : Σ Σ is defined by the following convolution formula
J m α , μ F ( χ ) N m α F G ( χ ) = 1 χ ( 1 χ ) μ + 1 , χ Λ * ,
where the power is at the principal value, and we have
J m α , μ F ( χ ) = 1 χ + j = 2 μ + j j m + j + 1 m α a j b j χ j , χ Λ * ,
for m > 0 , α 0 , and μ 0 . From (12), it is easy to verify that
χ J m α , μ F ( χ ) = m J m α + 1 , μ F ( χ ) ( m + 1 ) J m α , μ F ( χ ) , χ Λ * .
To investigate main results, we need the following Lemmas:
Lemma 1
([1]). Assume that E Σ and
K χ = 1 χ 0 χ E t d t χ Λ * .
If
Re 1 + χ E χ E χ > 1 2 χ Λ * ,
then K C .
Lemma 2
([7]). Consider that the convex function E satisfies E 0 = c , let λ C * such that Re λ 0 . If P H c , j with P 0 = c and : C 2 × Λ C , P χ + χ P χ = P χ + 1 λ χ P χ is holomorphic in Λ; then,
Y C 2 × Λ P χ + 1 λ χ P χ Y E Λ E χ P χ + 1 λ χ P χ Y E χ χ Λ ,
implies
Y P Λ P χ Y q Λ q χ Y E Λ E χ .
i.e.,
P χ Y q χ ,
where
q χ = λ n χ λ / n 0 χ t λ n 1 E t d t ,
is convex and best dominant.
Lemma 3
([7]). Consider q is convex function in Λ, let E χ = q χ + n ϑ χ q χ , ϑ > 0 and j N . If P H q 0 , j and : C 2 × Λ C , P χ + χ P χ = P χ + ϑ χ P χ in Λ, then
Y P Λ P χ + χ P χ Y E Λ E χ P χ + ϑ χ P χ Y q χ ,
then
Y P Λ P χ Y q Λ q χ , χ Λ
implies that
P χ Y q χ .
and q is the best fuzzy dominant.
Recently, El-Deeb et al. [8], Srivastava and El-Deeb [9], El-Deeb and Oros [10], Lupaş [4,7,11,12,13], Oros [5,6,14,15,16,17], El-Deeb and Lupas [18] and Wanas [19,20,21] obtained fuzzy differential subordination results.
In Section 2 below, we obtain several fuzzy differential subordinations for meromorphic functions that are associated with the operator J m α , μ by using the method of fuzzy differential subordination.

2. Main Results

Theorem 1.
Let the convex function ϕ in Λ * , such that ϕ 0 = 1 .
E = ϕ χ + χ ϕ χ χ Λ *
For F and satisfies the following fuzzy differetial subordination:
Y Λ C 2 × Λ * m J m α + 1 , μ F ( χ ) m + 1 J m α , μ F ( χ ) + χ χ J m α , μ F ( χ ) Y E Λ * E χ ,
implies
m J m α + 1 , μ F ( χ ) m + 1 J m α , μ F ( χ ) + χ χ J m α , μ F ( χ ) Y E χ
then
Y χ J m α , μ F ( χ ) χ J m α , μ F ( χ ) Y E Λ * E χ
equivalently with
χ J m α , μ F ( χ ) Y ϕ χ .
Proof. 
Let
P χ = χ J m α , μ F ( χ ) .
From 12 and (15), we have
P χ + χ P χ = m 1 χ + j = 2 μ + j k m + j + 1 m α + 1 a j b j χ j m + 1 1 χ + j = 2 μ + j k m + j + 1 m α a j b j χ j + 1 χ + j = 2 j 2 μ + j k m + j + 1 m α a j b j χ j = m J m α + 1 , μ F ( χ ) m + 1 J m α , μ F ( χ ) + χ χ J m α , μ F ( χ ) .
From (14) and (16), we obtain
Y χ J m α , μ F ( χ ) χ J m α , μ F ( χ ) Y E Λ * E χ ,
which implies that
Y Λ C 2 × Λ * P χ + χ P χ Y E Λ * E χ Y E Λ * ϕ χ + χ ϕ χ .
Thus, by applying Lemma 2 with λ = 1 , we obtain
Y P Λ * P χ Y ϕ * ϕ χ Y χ J m α , μ F ( χ ) χ J m α , μ F ( χ ) Y ϕ Λ * ϕ χ
i.e.,
χ J m α , μ F ( χ ) Y ϕ χ .
The proof of the theorem is completed. □
Theorem 2.
Let ϕ be the convex function in Λ * , such that ϕ 0 = 1 , and
E = ϕ χ + χ ϕ χ χ Λ *
Let F and satisfies the following fuzzy differetial subordination:
Y χ J m α , μ F ( χ ) χ J m α , μ F ( χ ) Y E Λ * E χ χ J m α , μ F ( χ ) Y E χ
then
Y J m α , μ F ( χ ) J m α , μ F ( χ ) Y ϕ Λ * ϕ χ J m α , μ F ( χ ) Y ϕ χ .
Proof. 
Assume that
P χ = J m α , μ F ( χ )
From 12 and (18), we have
P χ + χ P χ = 1 χ + j = 2 μ + j k m + j + 1 m α a j b j χ j + 1 χ + j = 2 j μ + j k m + j + 1 m α a j b j χ j = j = 2 j + 1 μ + j k m + j + 1 m α a j b j χ j .
We obtain
P χ + χ P χ = χ J m α , μ F ( χ ) .
We obtain
Y χ J m α , μ F ( χ ) χ J m α , μ F ( χ ) Y E Λ * E χ ,
which implies that
Y Ψ C 2 × Λ * P χ + χ P χ Y E Λ * E χ Y ϕ Λ * ϕ χ + χ ϕ χ .
Applying Lemma 3, we obtain
Y P Λ * P χ Y ϕ Λ * ϕ χ Y J m α , μ F ( χ ) J m α , μ F ( χ ) Y ϕ Λ * ϕ χ ,
which implies that
J m α , μ F ( χ ) Y ϕ χ .
The proof of Theorem 2 is completed. □
Theorem 3.
For E H Λ * with E 0 = 1 , where
Re 1 + χ E χ E χ > 1 2 χ Λ * .
If F and the following fuzzy differential subordination holds true:
Y χ J m α , μ F ( χ ) χ J m α , μ F ( χ ) Y E Λ * E χ J m α , μ F ( χ ) F E χ
then
Y J m α , μ F ( χ ) J m α , μ F ( χ ) Y ϕ Λ * ϕ χ J m α , μ F ( χ ) F ϕ χ .
where the function ϕ χ defined as follows
ϕ χ = 1 χ 0 χ E t d t
is convex and is the best fuzzy dominant.
Proof. 
Let
P χ = J m α , μ F ( χ ) .
It is clear that P χ H 1 , 1 . Suppose that E H Λ * with E 0 = 1 , such that
Re 1 + χ E χ E χ > 1 2 χ Λ * .
From Lemma 1, we have
ϕ χ = 1 χ 0 χ E t d t ,
is convex and satisfies the fuzzy differetial subordination (20). Since
E χ = ϕ χ + χ ϕ χ χ Λ * .
We have
P χ + χ P χ = j = 2 j + 1 μ + j j m + j + 1 m α a j b j χ j = χ J m α , μ F ( χ ) .
From (22) the fuzzy differential subordination (20) is
Y P Λ P χ + χ P χ Y E Λ E χ .
By applying Lemma 3 with v = 1 , we obtain
Y P Λ * P χ Y ϕ Λ * ϕ χ .
Which complete the proof. □
Setting
E χ = 1 + 2 ρ 1 χ 1 + χ χ Λ *
in Theorem 3, we obtain the following corollary.
Corollary 1.
Assume that
E χ = 1 + 2 ρ 1 χ 1 + χ χ Λ *
is convex function in Λ * such that E 0 = 1 and 0 ρ < 1 . The function F satisfies the following fuzzy differential subordination:
Y χ J m α , μ F ( χ ) χ J m α , μ F ( χ ) Y E Λ * E χ χ J m α , μ F ( χ ) Y E χ ,
then the function ϕ χ is
ϕ χ = 2 ρ 1 + 2 1 ρ χ log 1 + χ ,
is convex and is the fuzzy best dominant.
Theorem 4.
Let ϕ be convex function in Λ * and ϕ 0 = 1 ,
E χ = ϕ χ + χ ϕ χ .
Let F , and χ J m α 1 , μ F ( χ ) J m α , μ F ( χ ) be in Λ * . If
Y χ J m α 1 , μ F ( χ ) J m α , μ F ( χ ) χ J m α 1 , μ F ( χ ) J m α , μ F ( χ ) Y E Λ * E ζ χ J m α 1 , μ F ( χ ) J m α , μ F ( χ ) Y E χ ,
then
Y J m α 1 , μ F ( χ ) J m α , μ F ( χ ) J m α 1 , μ F ( χ ) J m α , μ F ( χ ) Y ϕ Λ * ϕ χ ,
i.e.,
J m α 1 , μ F ( χ ) J m α , μ F ( χ ) Y ϕ χ .
Proof. 
Assuming that
P χ = J m α 1 , μ F ( χ ) J m α , μ F ( χ ) H 1 , 1 .
Differentiating both sides of (25) with respect to χ , we obtain
P χ = J m α 1 , μ F ( χ ) J m α , μ F ( χ ) P χ J m α , μ F ( χ ) J m α , μ F ( χ ) .
Then,
P χ + χ P χ = J m α , μ F ( χ ) χ J m α 1 , μ F ( χ ) + J m α 1 , μ F ( χ ) χ J m α 1 , μ F ( χ ) J m α , μ F ( χ ) J m α , μ F ( χ ) 2 = χ J m α 1 , μ F ( χ ) J m α , μ F ( χ ) .
Utilizing (26) in (24) we can obtain
Y χ J m α 1 , μ F ( χ ) J m α , μ F ( χ ) χ J m α 1 , μ F ( χ ) J m α , μ F ( χ ) Y E Λ * E χ ,
which implies that
Y P Λ P χ + χ P χ Y E Λ * E χ Y ϕ Λ * ϕ χ + χ ϕ χ .
Thus, by applying Lemma 3 with ϑ = 1 , we obtain
Y J m α 1 , μ F ( χ ) J m α , μ F ( χ ) J m α 1 , μ F ( χ ) J m α , μ F ( χ ) Y ϕ Λ * ϕ χ ,
i.e.,
J m α 1 , μ F ( χ ) J m α , μ F ( χ ) Y ϕ χ .
The proof of the theorem is completed. □

3. Conclusions

In our present investigation of the applications of fuzzy differential subordinations in the geometric function theory of complex analysis, we successfully made use of the integral operator J m α , μ for meromorphic function. Another avenue for further research on this subject is provided by the fact that, in the theory of differential subordinations and differential superordinations, there are differential subordinations and differential superordinations of the third and higher orders.

Author Contributions

Conceptualization, A.A.L. and S.M.E.-D.; methodology, S.M.E.-D.; software, A.A.L.; validation, A.A.L. and S.M.E.-D.; formal analysis, A.A.L. and S.M.E.-D.; investigation, A.A.L.; resources, S.M.E.-D.; data curation, S.M.E.-D.; writing—original draft preparation, S.M.E.-D.; writing—review and editing, A.A.L. and S.M.E.-D.; visualization, A.A.L.; supervision, S.M.E.-D.; project administration, S.M.E.-D.; funding acquisition, A.A.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The researchers would like to thank the Deanship of Scienti.c Research, Qassim University, for funding the publication of this project.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications. In Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
  2. Miller, S.S.; Mocanu, P.T. Subordinants of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar] [CrossRef]
  3. Gal, S.G.; Ban, A.I. Elemente de Matematica Fuzzy; University of Oradea: Oradea, Romania, 1996. (In Romanian) [Google Scholar]
  4. Alb Lupaş, A.; Oros, G. On special fuzzy differential subordinations using Sălăgean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar] [CrossRef]
  5. Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
  6. Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis 2012, 30, 55–64. [Google Scholar]
  7. Alb Lupaş, A. A note on special fuzzy differential subordinations using multiplier transformation and Ruschewehy derivative. J. Comput. Anal. Appl. 2018, 25, 1112–1116. [Google Scholar]
  8. El-Deeb, S.M.; Khan, N.; Arif, M.; Alburaikan, A. Fuzzy differential subordination for meromorphic function. Axioms 2022, 11, 534. [Google Scholar] [CrossRef]
  9. Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
  10. El-Deeb, S.M.; Oros, G.I. Fuzzy differential subordinations connected with the linear operator. Math. Bohem. 2021, 146, 397–406. [Google Scholar] [CrossRef]
  11. Alb Lupas, A. A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
  12. Alb Lupas, A.; Oros, G.I. New Applications of Salagean and Ruscheweyh Operators for Obtaining Fuzzy Differential Subordinations. Mathematics 2021, 9, 2000. [Google Scholar] [CrossRef]
  13. Alb Lupaş, A.; Cătaş, A. Fuzzy Differential Subordination of the Atangana-Baleanu Fractional Integral. Symmetry 2021, 13, 1929. [Google Scholar] [CrossRef]
  14. Oros, G.I. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 229–240. [Google Scholar] [CrossRef]
  15. Oros, G.I. Fuzzy Differential Subordinations Obtained Using a Hypergeometric Integral Operator. Mathematics 2021, 9, 2539. [Google Scholar] [CrossRef]
  16. Oros, G.I.; Oros, G. Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babes-Bolyai Math. 2012, 57, 239–248. [Google Scholar]
  17. Oros, G.I.; Oros, G. Briot-Bouquet fuzzy differential subordination. An. Univ. Oradea Fasc. Mat. 2012, 19, 83–87. [Google Scholar]
  18. El-Deeb, S.M.; Alb Lupas, A. Fuzzy differential subordinations associated with an integral operator. An. Univ. Oradea Fasc. Mat. 2020, 27, 133–140. [Google Scholar]
  19. Altınkaya, Ş.; Wanas, A.K. Some properties for fuzzy differential subordination defined by Wanas operator. Earthline J. Math. Sci. 2020, 4, 51–62. [Google Scholar] [CrossRef]
  20. Wanas, A.K.; Majeed, A.H. Fuzzy differential subordination properties of analytic functions involving generalized differential operator. Sci. Int. (Lahore) 2018, 30, 297–302. [Google Scholar]
  21. Wanas, A.K.; Bulut, S. Some Results for Fractional Derivative Associated with Fuzzy Differential Subordinations. J. Al-Qadisiyah Comput. Sci. Math. 2020, 12, 27–36. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

El-Deeb, S.M.; Alb Lupaş, A. Fuzzy Differential Subordination for Meromorphic Function Associated with the Hadamard Product. Axioms 2023, 12, 47. https://doi.org/10.3390/axioms12010047

AMA Style

El-Deeb SM, Alb Lupaş A. Fuzzy Differential Subordination for Meromorphic Function Associated with the Hadamard Product. Axioms. 2023; 12(1):47. https://doi.org/10.3390/axioms12010047

Chicago/Turabian Style

El-Deeb, Sheza M., and Alina Alb Lupaş. 2023. "Fuzzy Differential Subordination for Meromorphic Function Associated with the Hadamard Product" Axioms 12, no. 1: 47. https://doi.org/10.3390/axioms12010047

APA Style

El-Deeb, S. M., & Alb Lupaş, A. (2023). Fuzzy Differential Subordination for Meromorphic Function Associated with the Hadamard Product. Axioms, 12(1), 47. https://doi.org/10.3390/axioms12010047

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop