An Approach for the Assessment of Multi-National Companies Using a Multi-Attribute Decision Making Process Based on Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean Operators
Abstract
:1. Introduction
2. Preliminaries
3. Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean (IVSFMSM) Operator
4. Interval-Valued IVSFDMSM Operator
5. Special Cases Analysis
6. Application to MADM
- for stock purchases;
- for stock award;
- for the charge of control;
- for the bonus of the company.
7. Comparative Study
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K. Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval Valued Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean Fuzzy Subsets. In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 57–61. [Google Scholar]
- Cuong, B. Picture Fuzzy Sets-First Results. Part 1. In Seminar. Neuro-Fuzzy Systems with Applications; 2013. [Google Scholar]
- Cuong, B.C.; Kreinovich, V. Picture Fuzzy Sets—A New Concept for Computational Intelligence Problems. In Proceedings of the 2013 Third World Congress on Information and Communication Technologies (WICT 2013), Hanoi, Vietnam, 15–18 December 2013; pp. 1–6. [Google Scholar]
- Mahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An Approach toward Decision-Making and Medical Diagnosis Problems Using the Concept of Spherical Fuzzy Sets. Neural Comput. Appl. 2019, 31, 7041–7053. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized Orthopair Fuzzy Sets. IEEE Trans. Fuzzy Syst. 2016, 25, 1222–1230. [Google Scholar] [CrossRef]
- Ghaznavi, M.; Soleimani, F.; Hoseinpoor, N. Parametric Analysis in Fuzzy Number Linear Programming Problems. Int. J. Fuzzy Syst. 2016, 18, 463–477. [Google Scholar] [CrossRef]
- Jafari, H.; Malinowski, M.T.; Ebadi, M.J. Fuzzy Stochastic Differential Equations Driven by Fractional Brownian Motion. Adv. Differ. Equ. 2021, 2021, 16. [Google Scholar] [CrossRef]
- Ullah, K.; Hassan, N.; Mahmood, T.; Jan, N.; Hassan, M. Evaluation of Investment Policy Based on Multi-Attribute Decision-Making Using Interval Valued T-Spherical Fuzzy Aggregation Operators. Symmetry 2019, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Ullah, K.; Kousar, Z.; Pamucar, D.; Jovanov, G.; Vranješ, Ð.; Hussain, A.; Ali, Z. Application of Hamacher Aggregation Operators in the Selection of the Cite for Pilot Health Project Based on Complex T-Spherical Fuzzy Information. Math. Probl. Eng. 2022, 2022, 3605641. [Google Scholar] [CrossRef]
- Ali, Z.; Mahmood, T.; Yang, M.-S. Complex T-Spherical Fuzzy Aggregation Operators with Application to Multi-Attribute Decision Making. Symmetry 2020, 12, 1311. [Google Scholar] [CrossRef]
- Hussain, A.; Ullah, K.; Wang, H.; Bari, M. Assessment of the Business Proposals Using Frank Aggregation Operators Based on Interval-Valued T-Spherical Fuzzy Information. J. Funct. Spaces 2022, 2022, 2880340. [Google Scholar] [CrossRef]
- Hussain, A.; Ullah, K.; Yang, M.-S.; Pamucar, D. Aczel-Alsina Aggregation Operators on T-Spherical Fuzzy (TSF) Information with Application to TSF Multi-Attribute Decision Making. IEEE Access 2022, 10, 26011–26023. [Google Scholar] [CrossRef]
- Bonferroni, C. Sulle Medie Multiple Di Potenze. Boll. Dell’unione Mat. Ital. 1950, 5, 267–270. [Google Scholar]
- Liang, D.; Zhang, Y.; Xu, Z.; Darko, A.P. Pythagorean Fuzzy Bonferroni Mean Aggregation Operator and Its Accelerative Calculating Algorithm with the Multithreading. Int. J. Intell. Syst. 2018, 33, 615–633. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/int.21960 (accessed on 24 June 2022). [CrossRef]
- Sỳkora, S. Mathematical Means and Averages: Generalized Heronian Means; Stan’s Library: Castano Primo, Italy, 2009. [Google Scholar]
- Yu, D. Intuitionistic Fuzzy Geometric Heronian Mean Aggregation Operators. Appl. Soft Comput. 2013, 13, 1235–1246. [Google Scholar] [CrossRef]
- Jana, C.; Muhiuddin, G.; Pal, M. Some Dombi Aggregation of Q-Rung Orthopair Fuzzy Numbers in Multiple-Attribute Decision Making. Int. J. Intell. Syst. 2019, 34, 3220–3240. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.; Merigó, J.M. Partitioned Heronian Means Based on Linguistic Intuitionistic Fuzzy Numbers for Dealing with Multi-Attribute Group Decision Making. Appl. Soft Comput. 2018, 62, 395–422. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, R.; Wang, J.; Bai, K.; Xue, J. A New Multi-Criteria Group Decision-Making Approach Based on q-Rung Orthopair Fuzzy Interaction Hamy Mean Operators. Neural Comput. Appl. 2020, 32, 7465–7488. [Google Scholar] [CrossRef]
- Dombi, J. A General Class of Fuzzy Operators, the DeMorgan Class of Fuzzy Operators and Fuzziness Measures Induced by Fuzzy Operators. Fuzzy Sets Syst. 1982, 8, 149–163. [Google Scholar] [CrossRef]
- Chen, J.; Ye, J. Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making. Symmetry 2017, 9, 82. [Google Scholar] [CrossRef]
- Shi, L.; Ye, J. Dombi Aggregation Operators of Neutrosophic Cubic Sets for Multiple Attribute Decision-Making. Algorithms 2018, 11, 29. [Google Scholar] [CrossRef]
- Yang, W.; Pang, Y. New Q-Rung Orthopair Fuzzy Bonferroni Mean Dombi Operators and Their Application in Multiple Attribute Decision Making. IEEE Access 2020, 8, 50587–50610. [Google Scholar] [CrossRef]
- Ali, Z.; Mahmood, T.; Ullah, K.; Pamucar, D.; Cirovic, G. Power Aggregation Operators Based on T-Norm and t-Conorm under the Complex Intuitionistic Fuzzy Soft Settings and Their Application in Multi-Attribute Decision Making. Symmetry 2021, 13, 1986. [Google Scholar] [CrossRef]
- Garg, H.; Ali, Z.; Mahmood, T. Algorithms for Complex Interval-Valued q-Rung Orthopair Fuzzy Sets in Decision Making Based on Aggregation Operators, AHP, and TOPSIS. Expert Syst. 2021, 38, e12609. [Google Scholar] [CrossRef]
- Garg, H. Generalized Pythagorean Fuzzy Geometric Aggregation Operators Using Einstein T-Norm and t-Conorm for Multicriteria Decision-Making Process. Int. J. Intell. Syst. 2017, 32, 597–630. [Google Scholar] [CrossRef]
- Maclaurin, C. A Second Letter to Martin Folkes, Esq.; Concerning the Roots of Equations, with Demonstration of Other Rules of Algebra. Philos. Trans. R. Soc. Lond. Ser. A 1729, 1729, 59–96. [Google Scholar]
- Liu, P.; Chen, S.-M.; Wang, Y. Multiattribute Group Decision Making Based on Intuitionistic Fuzzy Partitioned Maclaurin Symmetric Mean Operators. Inf. Sci. 2020, 512, 830–854. [Google Scholar] [CrossRef]
- Liu, Z.; Teng, F.; Liu, P.; Ge, Q. Interval-valued intuitionistic fuzzy power maclaurin symmetric mean aggregation operators and their application to multiple attribute group decision-making. IJUQ 2018, 8, 211–232. [Google Scholar] [CrossRef]
- Garg, H. Hesitant Pythagorean Fuzzy Maclaurin Symmetric Mean Operators and Its Applications to Multiattribute Decision-Making Process. Int. J. Intell. Syst. 2019, 34, 601–626. [Google Scholar] [CrossRef]
- Wei, G.; Garg, H.; Gao, H.; Wei, C. Interval-Valued Pythagorean Fuzzy Maclaurin Symmetric Mean Operators in Multiple Attribute Decision Making. IEEE Access 2018, 6, 67866–67884. [Google Scholar] [CrossRef]
- Ullah, K. Picture Fuzzy Maclaurin Symmetric Mean Operators and Their Applications in Solving Multiattribute Decision-Making Problems. Math. Probl. Eng. 2021, 2021, 1098631. [Google Scholar] [CrossRef]
- Ashraf, A.; Ullah, K.; Hussain, A.; Bari, M. Interval-Valued Picture Fuzzy Maclaurin Symmetric Mean Operator with Application in Multiple Attribute Decision-Making. Rep. Mech. Eng. 2022, 3, 301–317. [Google Scholar] [CrossRef]
- Liu, P.; Chen, S.-M.; Wang, P. Multiple-Attribute Group Decision-Making Based on q-Rung Orthopair Fuzzy Power Maclaurin Symmetric Mean Operators. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 3741–3756. [Google Scholar] [CrossRef]
- Ali, Z.; Mahmood, T. Maclaurin Symmetric Mean Operators and Their Applications in the Environment of Complex Q-Rung Orthopair Fuzzy Sets. Comput. Appl. Math. 2020, 39, 1–27. [Google Scholar] [CrossRef]
- Ali, R.; Abdullah, S.; Muhammad, S.; Naeem, M.; Chinram, R. Complex Intuitionistic Fuzzy Maclaurin Symmetric Mean Operators and Its Application to Emergency Program Selection. J. Intell. Fuzzy Syst. 2021, 41, 517–538. [Google Scholar] [CrossRef]
- Ning, B.; Wei, G.; Lin, R.; Guo, Y. A Novel MADM Technique Based on Extended Power Generalized Maclaurin Symmetric Mean Operators under Probabilistic Dual Hesitant Fuzzy Setting and Its Application to Sustainable Suppliers Selection. Expert Syst. Appl. 2022, 204, 117419. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. Maclaurin Symmetric Mean Aggregation Operators Based on T-Norm Operations for the Dual Hesitant Fuzzy Soft Set. J. Ambient Intell. Hum. Comput. 2020, 11, 375–410. [Google Scholar] [CrossRef]
- Aytekin, A. Comparative Analysis of the Normalization Techniques in the Context of MCDM Problems. Decis. Mak. Appl. Manag. Eng. 2021, 4, 1–25. [Google Scholar] [CrossRef]
- Pamučar, D.S.; Savin, L.M. Multiple-criteria model for optimal off-road vehicle selection for passenger transportation: BWM-COPRAS model. Mil. Tech. Cour. 2020, 68, 28–64. [Google Scholar] [CrossRef]
- Bouraima, M.B.; Stević, Ž.; Tanackov, I.; Qiu, Y. Assessing the performance of Sub-Saharan African (SSA) railways based on an integrated Entropy-MARCOS approach. Oper. Res. Eng. Sci. Theory Appl. 2021, 4, 13–35. [Google Scholar] [CrossRef]
- Alosta, A.; Elmansuri, O.; Badi, I. Resolving a location selection problem by means of an integrated AHP-RAFSI approach. Rep. Mech. Eng. 2021, 2, 135–142. [Google Scholar] [CrossRef]
- Stojanović, I.; Puška, A. Logistics Performances of Gulf Cooperation Council’s Countries in Global Supply Chains. Decis. Mak. Appl. Manag. Eng. 2021, 4, 174–193. [Google Scholar] [CrossRef]
- Bakir, M.; Akan, Ş.; Özdemir, E. Regional aircraft selection with fuzzy PIPRECIA and fuzzy MARCOS: A case study of the Turkish airline industry. Facta Univ. Ser. Mech. Eng. 2021, 19, 423–445. [Google Scholar] [CrossRef]
- Ayaz, T.; Al-Shomrani, M.M.; Abdullah, S.; Hussain, A. Evaluation of Enterprise Production Based on Spherical Cubic Hamacher Aggregation Operators. Mathematics 2020, 8, 1761. [Google Scholar] [CrossRef]
- Ahmmad, J.; Mahmood, T.; Chinram, R.; Iampan, A. Some Average Aggregation Operators Based on Spherical Fuzzy Soft Sets and Their Applications in Multi-Criteria Decision Making. AIMS Math. 2021, 6, 7798–7833. [Google Scholar] [CrossRef]
- Jin, Y.; Ashraf, S.; Abdullah, S. Spherical Fuzzy Logarithmic Aggregation Operators Based on Entropy and Their Application in Decision Support Systems. Entropy 2019, 21, 628. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Ullah, K.; Pamucar, D. Performance Evaluation of Solar Energy Cells Using the Interval-Valued T-Spherical Fuzzy Bonferroni Mean Operators. Energies 2022, 15, 292. [Google Scholar] [CrossRef]
- Mahmood, T. A Novel Approach towards Bipolar Soft Sets and Their Applications. J. Math. 2020, 2020, 4690808. [Google Scholar] [CrossRef]
0.23 | 0.35 | 0.14 | 0.15 | 0.12 | 0.45 | 0.05 | 0.21 | 0.17 | 0.31 | 0.15 | 0.19 | |
0.21 | 0.56 | 0.2 | 0.3 | 0.08 | 0.12 | 0.32 | 0.42 | 0.18 | 0.19 | 0.29 | 0.36 | |
0.15 | 0.21 | 0.09 | 0.18 | 0.29 | 0.41 | 0.19 | 0.34 | 0.25 | 0.28 | 0.17 | 0.22 | |
0.19 | 0.25 | 0.37 | 0.41 | 0.09 | 0.12 | 0.05 | 0.17 | 0.04 | 0.14 | 0.09 | 0.12 | |
0.12 | 0.31 | 0.15 | 0.21 | 0.09 | 0.11 | 0.12 | 0.15 | 0.1 | 0.16 | 0.13 | 0.15 | |
0.11 | 0.19 | 0.09 | 0.14 | 0.05 | 0.25 | 0.11 | 0.22 | 0.17 | 0.41 | 0.09 | 0.17 | |
0.03 | 0.17 | 0.02 | 0.18 | 0.1 | 0.16 | 0.09 | 0.21 | 0.21 | 0.42 | 0.25 | 0.31 | |
0.03 | 0.16 | 0.01 | 0.25 | 0.02 | 0.21 | 0.03 | 0.04 | 0.01 | 0.02 | 0.02 | 0.06 |
0.05 | 0.52 | 0.54 | 0.51 | 0.64 | 0.05 | 0.01 | 0.04 | 0.52 | 0.53 | 0.52 | 0.53 | |
0.46 | 0.51 | 0.51 | 0.51 | 0.52 | 0.46 | 0.46 | 0.46 | 0.50 | 0.51 | 0.50 | 0.51 | |
0.57 | 0.02 | 0.03 | 0.01 | 0.12 | 0.57 | 0.52 | 0.55 | 0.01 | 0.03 | 0.01 | 0.02 | |
0.51 | 0.46 | 0.46 | 0.46 | 0.46 | 0.51 | 0.50 | 0.51 | 0.46 | 0.46 | 0.46 | 0.46 | |
0.00 | 0.02 | 0.50 | 0.52 | 0.50 | 0.52 | 0.23 | 0.02 | 0.51 | 0.55 | 0.51 | 0.52 | |
0.46 | 0.46 | 0.50 | 0.50 | 0.50 | 0.50 | 0.46 | 0.91 | 0.50 | 0.51 | 0.50 | 0.50 | |
0.50 | 0.52 | 0.00 | 0.02 | 0.00 | 0.02 | 0.50 | 0.03 | 0.01 | 0.03 | 0.01 | 0.01 | |
0.50 | 0.50 | 0.46 | 0.46 | 0.46 | 0.46 | 0.50 | 0.01 | 0.45 | 0.46 | 0.46 | 0.45 |
Score | ||||
---|---|---|---|---|
IVSFMSM | −0.0035 | −0.0008 | −0.0003 | −0.0021 |
IVSFWMSM | −0.0051 | −0.0029 | −0.0014 | −0.0049 |
IVSFDMSM | 0.3287 | 0.3403 | 0.3354 | 0.1749 |
IVSFDWMSM | 0.0270 | 0.0269 | 0.0268 | 0.0135 |
Operators | Ranking Values |
---|---|
IVSFMSM | |
IVSFWMSM | |
IVSFDMSM | |
IVSFDWMSM |
Operators | ||||
---|---|---|---|---|
IVSFMSM | ||||
IVSFWMSM | ||||
IVSFDMSM | ||||
IVSFDWMSM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, A.; Ullah, K.; Božanić, D.; Hussain, A.; Wang, H.; Puška, A. An Approach for the Assessment of Multi-National Companies Using a Multi-Attribute Decision Making Process Based on Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean Operators. Axioms 2023, 12, 4. https://doi.org/10.3390/axioms12010004
Ashraf A, Ullah K, Božanić D, Hussain A, Wang H, Puška A. An Approach for the Assessment of Multi-National Companies Using a Multi-Attribute Decision Making Process Based on Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean Operators. Axioms. 2023; 12(1):4. https://doi.org/10.3390/axioms12010004
Chicago/Turabian StyleAshraf, Ansa, Kifayat Ullah, Darko Božanić, Amir Hussain, Haolun Wang, and Adis Puška. 2023. "An Approach for the Assessment of Multi-National Companies Using a Multi-Attribute Decision Making Process Based on Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean Operators" Axioms 12, no. 1: 4. https://doi.org/10.3390/axioms12010004
APA StyleAshraf, A., Ullah, K., Božanić, D., Hussain, A., Wang, H., & Puška, A. (2023). An Approach for the Assessment of Multi-National Companies Using a Multi-Attribute Decision Making Process Based on Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean Operators. Axioms, 12(1), 4. https://doi.org/10.3390/axioms12010004