Fixed-Point Theorems for ℒγ Contractions in Branciari Distance Spaces
Abstract
:1. Introduction
- (1)
- each open ball is open set;
- (2)
- each Branciari distance is continuous in each the coordinates;
- (3)
- each topology induced by Branciari distance spaces is a Hausdorff topological space.
- (1)
- is non-decreasing;
- (2)
- for any sequence ,
- (3)
- there are and , such that
- (4)
- is continuous on .
- ()
- ;
- ()
- ;
- ()
- , where is a non-decreasing self-mapping on , satisfying ;
- ()
- for any sequence with
- (i)
- for all , where ;
- (ii)
- , where ϕ is a non-decreasing and lower semi-continuous self-mapping on , satisfying ;
- (iii)
- , where .Then, .Note that if , then (see [24]).
- (i)
- , where ψ and φ are continuous self-mappings on , satisfying , and φ is an increasing mapping;
- (ii)
- , where η is a upper semi-continuous self-mapping on , satisfying and ;
- (iii)
- , where ϕ is a self-mapping on , satisfying , exists and , and .Then, .Note that if , then (see [30]).
- (1)
- ;
- (2)
- ;
- (3)
- (trapezoidal inequality).
- (·)
- converges to u, whenever
- (·)
- is a Cauchy sequence, when ;
- (·)
- is complete if every Cauchy sequence in U converges to some point in U.
- (i)
- Limit is not unique.We infer thatHence, the sequence is convergent to 0 and 2, and the limit is not unique.
- (ii)
- The convergent sequence is not a Cauchy sequence.Hence, is not a Cauchy sequence.
- (iii)
- (iv)
- The open ball with center and radius is the set . There is no , such that
- (i)
- It folows from (2) that the sequential topology on U is not a Hausdorff space.
- (ii)
- The Branciari distance ϱ is not continuous with respect to the sequential topology on U. In fact, let be a fixed point, such that and .We show thatHowever,Hence, is not continuous with respect to the sequential topology on U.
- (iii)
- From (3) the family , where , is not a basis for any topology on , and so there is no topology which is compatible with the Branciari distance ϱ.
- (iv)
- It is known that the sequential topology is not compatible with the Branciari distance ϱ.
- (v)
- There is no Cauchy sequence, so it is a complete Branciari distance space.
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ,
- (i)
- (ii)
2. Fixed-Point Results
2.1. Fixed Points for Suzuki-Type Contractions
2.2. Fixed Points for Suzuki–Berinde-Type Contractions
3. Consequence
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suzuki, T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2009, 71, 5313–5317. [Google Scholar] [CrossRef]
- Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004, 9, 43–53. [Google Scholar]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. (Debr.) 2000, 5, 31–37. [Google Scholar]
- Sarma, I.R.; Rao, J.M.; Rao, S.S. Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2, 180–182. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, K.; Lakzian, H. Fixed point results on a class of generalized metric spaces. Math. Sci. 2012, 6, 46. [Google Scholar] [CrossRef]
- Azam, A.; Arshad, M. Kannan fixed point theorem on generalized metric spaces. J. Nonlinear Sci. Appl. 2008, 1, 45–48. [Google Scholar] [CrossRef]
- Chen, C.M. Common fixed-point theorems in complete generalized metric spaces. J. Appl. Math. 2012, 2012, 945915. [Google Scholar] [CrossRef]
- Kadelburg, Z.; Radenović, S. Fixed point results in generalized metric spaces without Hausdorff property. Math. Sci. 2014, 8, 125. [Google Scholar] [CrossRef]
- Shatanawi, W.; Al-Rawashdeh, A.; Aydi, H.; Nashine, H.K. On a fixed point for generalized contractions in generalized metric spaces. Abstr. Appl. Anal. 2012, 2012, 246085. [Google Scholar] [CrossRef]
- Kadelburg, Z.; Radenović, S. On generalized metric spaces: A survey. TWMS J. Pure Appl. Math. 2014, 5, 3–13. [Google Scholar]
- Arshad, M.; Ahmad, J.; Karapınar, E. Some common fixed point results in rectangular metric spaces. Int. J. Anal. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Arshad, M.; Ameer, E.; Karapınar, E. Generalized contractions with triangular α-orbital admissible mapping on Branciari metric spaces. J. Inequalities Appl. 2016, 2016, 63. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, K.; Samet, B. Fixed points for generalized (α,ψ)-contractions on generalized metric spaces. J. Inequalities Appl. 2014, 2014, 229. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Karapinar, K.; Zhang, D. On common fixed points in the context of Brianciari metric spaces. Results Math. 2017, 71, 73–92. [Google Scholar] [CrossRef]
- Bari, C.D.; Vetro, P. Common fixed points in generalized metric spaces. Appl. Math. Commput. 2012, 218, 7322–7325. [Google Scholar] [CrossRef]
- Berzig, M.; Karapinar, E.; Hierro, A.F.R.-L.-d. Some fixed point theorems in Branciari metric spaces. Math. Slov. 2017, 67, 1189–1202. [Google Scholar] [CrossRef]
- Das, P. A fixed point theorem on a class of generalized metric spaces. Korean J. Math. Sci. 2002, 9, 29–33. [Google Scholar]
- Karapinar, E. Some fixed points results on Branciari metric spaces via implicit functions. Carpathian J. Math. 2015, 31, 339–348. [Google Scholar] [CrossRef]
- Karapinar, E.; Pitea, A. On α-ψ-Geraghty contraction type mappings on quasi Branciari metric spaces. J. Nonlinear Convex Anal. 2016, 17, 1291–1301. [Google Scholar]
- Kirk, W.A. Generlized metrics and Caristi’s theorem. Fixed Point Theory Appl. 2013, 2013, 129. [Google Scholar] [CrossRef]
- Samet, B. Discussion on “A fixed point theoremof Banach-Caccioppoli type on a class of generalized metric spaces” by A. Branciari. Publ. Math. (Debr.) 2010, 76, 493–494. [Google Scholar]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequalities Appl. 2014, 2014, 38. [Google Scholar] [CrossRef]
- Saleh, H.N.; Imdad, M.; Abdeljawad, T.; Arif, M. New contractive mappings and their fixed points in Branciari metric spaces. J. Funct. Spaces 2020, 2020, 9491786. [Google Scholar] [CrossRef]
- Cho, S.H. Fixed point theorems for -contractions in generalized metric spaces. Abstr. Appl. Anal. 2018, 2018, 1327691. [Google Scholar] [CrossRef]
- Jleli, M.; Karapinar, E.; Samet, B. Further generalizations of the Banach contraction principle. J. Inequalities And Appl. 2014, 2014, 439. [Google Scholar] [CrossRef]
- Erhan, I.M.; Karapınar, E.; Sekulic, T. Fixed points of (ψ, ϕ) contractions on rectangular metric spaces. Fixed Point Theory Appl. 2012, 2012, 138. [Google Scholar] [CrossRef]
- Ahmad, J.; Al-Mazrooei, A.E.; Cho, Y.J.; Yang, Y.O. Fixed point results for generalized θ-contractions. J. Nonlinear Sci. Appl. 2017, 10, 2350–2358. [Google Scholar] [CrossRef]
- Hasnuzzaman, M.D.; Imdad, M.; Saleh, H.N. On modified -contraction via binary relation with an application. Fixed Point Theory 2022, 23, 267–278. [Google Scholar] [CrossRef]
- Moustafa, S.I.; Shehata, A. -simulation functions over b-metric -like spaces and fractional hybrid differetial equations. J. Funct. Spaces 2020, 2020, 4650761. [Google Scholar]
- Cho, S.H. Fixed point theorems for set-valued -contractions in Braciari distance spaces. Abstr. Appl. Anal. 2021, 2021, 6384818. [Google Scholar] [CrossRef]
- Cho, S.H. Generalized -contractive mapping theorems in partially ordered sets with b-metric spaces. Adv. Math. Sci. J. 2020, 9, 8525–8546. [Google Scholar] [CrossRef]
- Barakat, M.A.; Aydi, H.; Mukheimer, A.; Solima, A.A.; Hyder, A. On multivalued -contractions and an application. Adv. Dfference Equations 2020, 2020, 554. [Google Scholar] [CrossRef]
- Barootkoob, S.; Lakzian, H. Fixed point results via -contractions on quasi w-distances. J. Math. Ext. 2021, 15, 1–22. [Google Scholar]
- Suzuki, T. Generalized metric spaces Do not have the compatible topology. Abstr. Appl. Anal. 2014, 2014, 458098. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. The Kannan’s fixed point theorem in a cone rectangular metric space. J. Nonlinear Sci. Appl. 2009, 2, 161–167. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S.-H. Fixed-Point Theorems for ℒγ Contractions in Branciari Distance Spaces. Axioms 2022, 11, 479. https://doi.org/10.3390/axioms11090479
Cho S-H. Fixed-Point Theorems for ℒγ Contractions in Branciari Distance Spaces. Axioms. 2022; 11(9):479. https://doi.org/10.3390/axioms11090479
Chicago/Turabian StyleCho, Seong-Hoon. 2022. "Fixed-Point Theorems for ℒγ Contractions in Branciari Distance Spaces" Axioms 11, no. 9: 479. https://doi.org/10.3390/axioms11090479
APA StyleCho, S. -H. (2022). Fixed-Point Theorems for ℒγ Contractions in Branciari Distance Spaces. Axioms, 11(9), 479. https://doi.org/10.3390/axioms11090479