The Use of a Log-Normal Prior for the Student t-Distribution
Abstract
:1. Introduction
2. Bayesian Inference
2.1. Validity of Estimation of the Degrees of Freedom
2.2. Effective Support of the Degrees of Freedom
- •
- : a sample simulated from with the truth deriving from a normally distributed population;
- •
- : a sample simulated from with the truth does not derive from a normally distributed population.
- 1.
- As the sample size N increases from small sample sizes (i.e., ) to moderate sample sizes (i.e., ), the threshold value increases.
- 2.
- For the sample size (and similarly for , and 500, respectively), the values (and similarly for , and , respectively) generate the observations , which are virtually distributed in a normal distribution (with the type I error 0.05).
- 3.
- The interval effectively covers a wide range of tail-thickness, from heavy-tailed to thin-tailed data, up to the maximum sample size considered in the experiment. Thus, the interval can be used as an effective support for a small-sample study.
2.3. Prior Distributions for the Degrees of Freedom
- (a)
- Jeffreys prior [3]:
- (b)
- Exponential prior [15]:The specification of the rate hyperparameter as is recommended in [15] to avoid introducing strong prior information, for similar reasons as for using objective priors. The prior mean of equal to 10 and the prior variance of are equal to 100. Almost of the prior mass is allocated to the effective support , .
- (c)
- Gamma prior [16]:
- (d)
- Log-normal prior:We recommend setting the mean and variance hyperparameters to 1. These hyperparameters are specified on the basis of the sensitivity analysis in Section 4.1. The prior mean and variance of are and , respectively. The log-normal prior (7) places nearly of the prior mass on the effective support , .
3. Posterior Computation Using Log-Normal Priors
3.1. Elliptical Slice Sampler
Algorithm 1: ESS to sample from (2) |
Goal: Sampling from the full conditional posterior distribution
Input: Current state . Output: A new state .
|
3.2. Bayesestdft R Package
- y: N-dimensional vector of continuous observations supported on , .
- ini.nu: the initial posterior sample value, (Default = 1).
- S: the number of posterior samples, S (Default = 1000).
- mu: mean of the log-normal prior density, (Default = 1).
- sigma.sq: variance of the log-normal prior density, (Default = 1).
- R>
- library(devtools)
- R>
- devtools::installgithub("yain22/bayesestdft")
- R>
- library(bayesestdft)
- R>
- x1 = rt(n = 100, df = 0.1); x2 = rt(n = 100, df = 1); x3 = rt(n = 100, df = 5)
- R>
- nu.1 = BayesLNP(x1); nu.2 = BayesLNP(x2); nu.3 = BayesLNP(x3)
4. Numerical Studies
4.1. Sensitivity Analysis for a Log-Normal Prior
4.2. Numerical Comparison Using the Jeffreys, Exponential, Gamma, and Log-Normal Priors
- (i)
- (ii)
- The Bayes estimator based on the log-normal prior (7) outperforms other estimators for () and ().
- (iii)
- The Bayes estimator based on the exponential prior (5) outperforms other estimators for () and ();
- (iv)
- The Bayes estimator based on the gamma prior (6) outperforms other estimators for () and ().
5. Real Data Analysis
6. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Student. The probable error of a mean. Biometrika 1908, 1–25. [Google Scholar]
- Casella, G.; Berger, R.L. Statistical Inference; Cengage Learning: Boston, MA, USA, 2021. [Google Scholar]
- Fonseca, T.C.; Ferreira, M.A.; Migon, H.S. Objective Bayesian analysis for the Student-t regression model. Biometrika 2008, 95, 325–333. [Google Scholar] [CrossRef]
- Lange, K.L.; Little, R.J.; Taylor, J.M. Robust statistical modeling using the t distribution. J. Am. Stat. Assoc. 1989, 84, 881–896. [Google Scholar] [CrossRef]
- Teichmoeller, J. A note on the distribution of stock price changes. J. Am. Stat. Assoc. 1971, 66, 282–284. [Google Scholar] [CrossRef]
- Nolan, J.P. Financial modeling with heavy-tailed stable distributions. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 45–55. [Google Scholar] [CrossRef]
- Fernández, C.; Steel, M.F. Multivariate Student-t regression models: Pitfalls and inference. Biometrika 1999, 86, 153–167. [Google Scholar] [CrossRef]
- Zhu, D.; Galbraith, J.W. A generalized asymmetric Student-t distribution with application to financial econometrics. J. Econom. 2010, 157, 297–305. [Google Scholar] [CrossRef]
- Vrontos, I.D.; Dellaportas, P.; Politis, D.N. Full Bayesian inference for GARCH and EGARCH models. J. Bus. Econ. Stat. 2000, 18, 187–198. [Google Scholar]
- Bollerslev, T. A conditionally heteroskedastic time series model for speculative prices and rates of return. Rev. Econ. Stat. 1987, 542–547. [Google Scholar] [CrossRef]
- Hurst, S.R.; Platen, E. The marginal distributions of returns and volatility. Lect. Notes Monogr. Ser. 1997, 31, 301–314. [Google Scholar]
- West, M. Outlier models and prior distributions in Bayesian linear regression. J. R. Stat. Soc. Ser. 1984, 46, 431–439. [Google Scholar] [CrossRef]
- Liu, C.; Rubin, D.B. ML estimation of the t distribution using EM and its extensions, ECM and ECME. Stat. Sin. 1995, 5, 19–39. [Google Scholar]
- Villa, C.; Rubio, F.J. Objective priors for the number of degrees of freedom of a multivariate t distribution and the t-copula. Comput. Stat. Data Anal. 2018, 124, 197–219. [Google Scholar] [CrossRef]
- Fernández, C.; Steel, M.F. On Bayesian modeling of fat tails and skewness. J. Am. Stat. Assoc. 1998, 93, 359–371. [Google Scholar]
- Juárez, M.A.; Steel, M.F. Model-based clustering of non-Gaussian panel data based on skew-t distributions. J. Bus. Econ. Stat. 2010, 28, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Jacquier, E.; Polson, N.G.; Rossi, P.E. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors. J. Econom. 2004, 122, 185–212. [Google Scholar] [CrossRef]
- He, D.; Sun, D.; He, L. Objective Bayesian analysis for the Student-t linear regression. Bayesian Anal. 2021, 16, 129–145. [Google Scholar] [CrossRef]
- Villa, C.; Walker, S.G. Objective prior for the number of degrees of freedom of at distribution. Bayesian Anal. 2014, 9, 197–220. [Google Scholar] [CrossRef]
- Jeffreys, H. Theory of Probability; Oxford University Press: New York, NY, USA, 1961; p. 472. [Google Scholar]
- Kass, R.E.; Wasserman, L. The selection of prior distributions by formal rules. J. Am. Stat. Assoc. 1996, 91, 1343–1370. [Google Scholar] [CrossRef]
- Berger, J. The case for objective Bayesian analysis. Bayesian Anal. 2006, 1, 385–402. [Google Scholar] [CrossRef]
- Consonni, G.; Fouskakis, D.; Liseo, B.; Ntzoufras, I. Prior distributions for objective Bayesian analysis. Bayesian Anal. 2018, 13, 627–679. [Google Scholar] [CrossRef]
- Finner, H.; Dickhaus, T.; Roters, M. Asymptotic tail properties of Student’s t-distribution. Commun. Stat. Methods 2008, 37, 175–179. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A.; Romer, R.H. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; USA Department of Commerce: Washington, DC, USA, 1988.
- Jameson, G.J. A simple proof of Stirling’s formula for the gamma function. Math. Gaz. 2015, 99, 68–74. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.H. Exponentiated generalized Pareto distribution: Properties and applications towards extreme value theory. Commun. Stat. Theory Methods 2019, 48, 2014–2038. [Google Scholar] [CrossRef]
- Castillo, E.; Hadi, A.S. Fitting the generalized Pareto distribution to data. J. Am. Stat. Assoc. 1997, 92, 1609–1620. [Google Scholar] [CrossRef]
- DuMouchel, W.H. On the asymptotic normality of the maximum-likelihood estimate when sampling from a stable distribution. Ann. Stat. 1973, 1, 948–957. [Google Scholar] [CrossRef]
- De Haan, L.; Ferreira, A.; Ferreira, A. Extreme Value Theory: An Introduction; Springer: Berlin/Heidelberg, Germany, 2006; Volume 21. [Google Scholar]
- Northrop, P.J.; Attalides, N. Posterior propriety in Bayesian extreme value analyses using reference priors. Stat. Sin. 2016, 26, 721–743. [Google Scholar] [CrossRef]
- Chu, J. Errors in Normal Approximations to the t, tau, and Similar Types of Distribution. Ann. Math. Stat. 1956, 27, 780–789. [Google Scholar] [CrossRef]
- Wang, M.; Yang, M. Posterior property of Student-t linear regression model using objective priors. Stat. Probab. Lett. 2016, 113, 23–29. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.R.; Rao, J. Small-sample comparisons of level and power for simple goodness-of-fit statistics under cluster sampling. J. Am. Stat. Assoc. 1987, 82, 630–636. [Google Scholar] [CrossRef]
- Razali, N.M.; Wah, Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Model. Anal. 2011, 2, 21–33. [Google Scholar]
- Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Shaphiro, S.; Wilk, M. An analysis of variance test for normality. Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Ho, K.W. The use of Jeffreys priors for the Student-t distribution. J. Stat. Comput. Simul. 2012, 82, 1015–1021. [Google Scholar] [CrossRef]
- Geweke, J. Bayesian treatment of the independent Student-t linear model. J. Appl. Econom. 1993, 8, S19–S40. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Chib, S.; Greenberg, E. Understanding the metropolis-hastings algorithm. Am. Stat. 1995, 49, 327–335. [Google Scholar]
- Murray, I.; Prescott Adams, R.; MacKay, D.J. Elliptical slice sampling. arXiv 2010, arXiv:1001.0175. [Google Scholar]
- Gustafson, P. A guided walk Metropolis algorithm. Stat. Comput. 1998, 8, 357–364. [Google Scholar] [CrossRef]
- Ma, Y.A.; Chen, Y.; Jin, C.; Flammarion, N.; Jordan, M.I. Sampling can be faster than optimization. Proc. Natl. Acad. Sci. USA 2019, 116, 20881–20885. [Google Scholar] [CrossRef]
- Dwivedi, R.; Chen, Y.; Wainwright, M.J.; Yu, B. Log-concave sampling: Metropolis-Hastings algorithms are fast! In Proceedings of the Conference on Learning Theory (PMLR), Stockholm, Sweden, 6–9 July 2018; pp. 793–797. [Google Scholar]
- Efron, B. Bootstrap methods: Another look at the jackknife. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 569–593. [Google Scholar]
- Stan Development Team. RStan: The R Interface to Stan, R Package version; Stan Development Team, 2016; Volume 2, p. 522. Available online: https://mc-stan.org (accessed on 22 July 2022).
- Hoffman, M.D.; Gelman, A. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 2014, 15, 1593–1623. [Google Scholar]
- Van de Schoot, R.; Kaplan, D.; Denissen, J.; Asendorpf, J.B.; Neyer, F.J.; Van Aken, M.A. A gentle introduction to Bayesian analysis: Applications to developmental research. Child Dev. 2014, 85, 842–860. [Google Scholar] [CrossRef]
- Praetz, P.D. The distribution of share price changes. J. Bus. 1972, 45, 49–55. [Google Scholar] [CrossRef]
- Gelman, A.; Hwang, J.; Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 2014, 24, 997–1016. [Google Scholar] [CrossRef]
- Berger, J.O.; Moreno, E.; Pericchi, L.R.; Bayarri, M.J.; Bernardo, J.M.; Cano, J.A.; De la Horra, J.; Martín, J.; Ríos-Insúa, D.; Betrò, B.; et al. An overview of robust Bayesian analysis. Test 1994, 3, 5–124. [Google Scholar] [CrossRef]
Prior | Mean | Variance | |||
---|---|---|---|---|---|
10 | 100 | 0.632 | 0.285 | 0.917 | |
20 | 200 | 0.264 | 0.448 | 0.712 | |
4.481 | 34.512 | 0.903 | 0.083 | 0.986 |
Statistics | United States | Japan | Germany | South Korea |
---|---|---|---|---|
Mean | 0.1753 | 0.1199 | 0.1368 | 0.1695 |
Variance | 1.5040 | 2.1411 | 2.2459 | 1.4347 |
Skewness | −0.2052 | −0.1317 | −0.1334 | −0.2722 |
Kurtosis | 3.2536 | 3.0309 | 3.0086 | 3.8631 |
Prior | United States | Japan | Germany | South Korea |
---|---|---|---|---|
5.63 (2.67, 11.59) | 3.66 (2.08, 6.63) | 3.31 (1.89, 5.73) | 5.56 (2.64, 11.28) | |
344.15 | 373.56 | 401.24 | 338.20 | |
7.82 (3.10, 17.91) | 4.37 (2.54, 7.28) | 3.91 (2.20, 6.88) | 7.08 (2.92, 14.18) | |
344.05 | 374.01 | 402.66 | 338.06 | |
10.52 (3.82, 25.91) | 4.94 (2.54, 10.12) | 4.26 (2.39, 7.62) | 9.86 (3.82, 25.88) | |
346.47 | 377.59 | 403.62 | 340.65 | |
6.24 (2.78, 14.63) | 3.93 (2.21, 7.85) | 3.56 (1.95, 6.09) | 5.74 (2.88, 11.31) | |
343.55 | 373.55 | 402.1 | 337.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y. The Use of a Log-Normal Prior for the Student t-Distribution. Axioms 2022, 11, 462. https://doi.org/10.3390/axioms11090462
Lee SY. The Use of a Log-Normal Prior for the Student t-Distribution. Axioms. 2022; 11(9):462. https://doi.org/10.3390/axioms11090462
Chicago/Turabian StyleLee, Se Yoon. 2022. "The Use of a Log-Normal Prior for the Student t-Distribution" Axioms 11, no. 9: 462. https://doi.org/10.3390/axioms11090462
APA StyleLee, S. Y. (2022). The Use of a Log-Normal Prior for the Student t-Distribution. Axioms, 11(9), 462. https://doi.org/10.3390/axioms11090462