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Abstract: It is typically difficult to estimate the number of degrees of freedom due to the leptokurtic
nature of the Student t-distribution. Particularly in studies with small sample sizes, special care
is needed concerning prior choice in order to ensure that the analysis is not overly dominated by
any prior distribution. In this article, popular priors used in the existing literature are examined
by characterizing their distributional properties on an effective support where it is desirable to
concentrate on most of the prior probability mass. Additionally, we suggest a log-normal prior as
a viable prior option. We show that the Bayesian estimator based on a log-normal prior compares
favorably to other Bayesian estimators based on the priors previously proposed via simulation studies
and financial applications.
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1. Introduction

Student’s t-distribution [1] occurs frequently in statistics. Its usual derivation and
utility is as the sampling distribution of certain test statistics derived based on normality [2];
however, over the past decades there has been growing interest in using the t-distribution
as a heavy-tailed alternative to Gaussian distribution when robustness to possible outliers
is a concern [3,4]. For example, it is widely known that the fluctuations in many financial
time series are not normal [5,6]. As such, t-distribution is commonly used in finance and
risk management, particularly to model asset or market index returns, for which the tails
of the Gaussian distribution are almost invariably found to be too thin [7–11].

We assume that random variables xi (i = 1, 2, · · · ) are independently and identically
distributed according to the Student t-distribution tν(x)

tν(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)

(
1 +

x2

ν

)− ν+1
2

, −∞ < x < ∞ (1)

depending on the number of degrees of freedom ν ∈ R+. Here, the notation R+ denotes
the parameter space (0, ∞), Γ(a) represents the gamma function, and the parameter ν
controls the heaviness of the tails of the density, including particular cases of ν = 1, where
the distribution coincides with the Cauchy density, and ν → ∞, where the distribution
converges to the standard normal density.

In this paper, the number of degrees of freedom ν in Student t-distributions is the
parameter of main interest. If a reasonable range of the degrees of freedom ν is known, the
value ν can be used as a tuning parameter in robust statistical modeling [4,12]. However,
there is often very limited knowledge about the degrees of freedom ν, and it may be
desirable to estimate ν based only on observed data x = (x1, x2, · · · , xN) that are believed to
be independently sampled from the t-distribution tν(x) (1). In particular, it is widely known
that in small-sample studies the accurate estimation of the degrees of freedom ν is very
difficult within both frequentist and Bayesian settings (see [3,13,14] and references therein).
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In this paper, we re-examine a fully Bayesian way of estimating the number of degrees
of freedom ν and suggest a new Bayesian estimator (i.e., posterior mean) based on a log-
normal prior. To our knowledge, no previous research has studied log-normal distribution
as a viable prior option in this context; hence, studying the operating characteristics of
the Bayes estimator based on a log-normal prior compared to those of several existing
Bayes estimators is of interest in its own right. There are ample examples of priors used
in diverse applications for estimating the degrees of freedom ν [3,15–17]. Broadly, these
priors fall into two classes according to whether they are (i) elicited from certain parametric
distributions (e.g., exponential and gamma distributions) [15,16] or are (ii) constructed by
formal rules such as the Jeffreys rule [3,18–21]. Despite certain differences in the derivation
procedures between these two classes of priors, to a certain extent the motivation for using
such priors is to have a robust Bayes estimator against outliers, possibly equipped with the
appearance of objectivity in the statistical analysis [22,23], even when the sample size is
fairly or moderately small, say, N = 30 or 100.

This article is organized as follows. In Section 2, we formulate an inference problem for
fully Bayesian estimation of the degrees of freedom, investigate a sufficient condition to in-
duce a valid posterior inference, and introduce popular previously used prior distributions
from the literature. Section 3 provides a state-of-the-art sampling algorithm to compute
the Bayes estimator based on a log-normal prior. In Section 4, numerical experiments are
conducted for the sensitivity analysis associated with the log-normal prior and for the com-
parison of the small-sample performance of several Bayes estimators. The performances of
these Bayes estimators are further compared through a real data application in Section 5.
Finally, Section 6 concludes the article.

2. Bayesian Inference
2.1. Validity of Estimation of the Degrees of Freedom

The Bayesian inference for the estimation of the number of degrees of freedom ν ∈ R+

commences with specifying a prior density function π(ν) supported on the parameter
space R+, followed by evaluating the posterior density function

π(ν|x) = p(x|ν) · π(ν)

m(x)
, ν ∈ R+, (2)

where p(x|ν) = ∏N
i=1 tν(xi) represents the likelihood based on the t distribution tν(x)

(1). The denominator in (2), m(x) =
∫

p(x|ν) · π(ν)dν is called the marginal likelihood
of observations x = (x1, x2, · · · , xN). To have a valid posterior inference, the marginal
likelihood m(x) should be finite for all x. However, as the likelihood p(x|ν) converges to a
positive constant, as ν→ +∞ (more precisely, it holds limν→+∞ p(x|ν) = φ(x) uniformly
for all x where the φ(x) represents the density of the N-dimensional multivariate standard
normal distribution; see Equation (1.1) from [24]), the propriety of the posterior is highly
dependent on the rate of decay of the prior π(ν). As such, it is nontrivial whether m(x) is
finite when the likelihood is based on the distribution of t.

In the following, we show that when a prior π(ν) is proper and supported on the
parameter space R+, the posterior density π(ν|x) is as well. To show this, we first prove
that the two functional components of the distribution of t (1) are bounded on R+.

Lemma 1. Consider functions g(ν) = (1 + x2/ν)−(ν+1)/2 and h(ν) = Γ((ν + 1)/2)/{
√

νπ
Γ(ν/2)} defined on the domain R+. Then, functions g and h are upper bounded on the domain R+.

Proof. Using elementary calculus, we can show that the following three properties hold for
the function g(ν) = (1 + x2/ν)−(ν+1)/2: (i) g is continuous on R+; (ii) limν→0+ g(ν) = 0;
and (iii) limν→+∞ g(ν) = e−x2/2 ≤ 1. Therefore, the function g(ν) is upper bounded on the
domain R+.

Next, we explore the three properties of the function h(ν) on the domain R+.
First, because the gamma function Γ(a) is continuous on the domain R+, the function
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h(ν) on the domain is as well. Second, it holds that limν→0+h(ν) = 0, because the nomina-
tor of h converges to the constant

√
π and the denominator of h diverges to +∞, as ν goes

to 0+. That is, limν→0+Γ((ν + 1)/2) =
√

π and limν→0+
√

νπ · Γ(ν/2) = +∞. The latter
is true due to a property of the gamma function, Γ(z) = 1/z− γ + (1/2)(γ2 + π2/6)z−
(1/6){γ3 + γπ2/2 + 2ζ(3)}z2 +O(z3), where γ is the Euler–Mascheroni constant and ζ(z)
is the Riemann zeta function [25]. Finally, using Stirling’s approximation [26], that is,
Γ(z) =

√
2π/z · (z/e)z · (1 + O(1/z)), with the nominator and denominator of h(ν), the

following equality is obtained:

h(ν) =

√
4π

ν+1 ·
(

ν+1
2e

) ν+1
2 · (1 + O(1/ν))

√
νπ ·

√
4π
ν ·
(

ν
2e
) ν

2 · (1 + O(1/ν))
=

1√
2eπ
·

√(
1 +

1
ν

)ν

· 1 + O(1/ν)

1 + O(1/ν)
. (3)

Because it generally holds that limν→+∞(1 + 1/ν)ν = e, we have limν→+∞h(ν) =
1/
√

2π. Thus, the function h(ν) is upper bounded on the domain R+ due to the three
derived properties of the function. This ends the proof.

Lemma 1 states that the likelihood function based on Student’s t-distribution, that
is, the function of ν with a fixed x, l(ν) = tν(x) (1), is bounded over the parameter
space R+. Thus, we comment that the argument in [3] (“Unfortunately, the estimation of
ν is not straightforward: the likelihood function tends to infinity as ν → 0+”) is not correct.
In actuality, the likelihood function tends to zero, as ν→ 0+.

We can now prove the main theorem.

Theorem 1. Suppose that x = (x1, x2, · · · , xN) is a random sample of size N from the distribution
of t (1) with degrees of freedom ν > 0. Let π(ν) be a proper prior density supported on R+. Then,
the posterior density π(ν|x) is proper as well.

Proof. Under the formulation of Bayes’s theorem where π(ν|x) = p(x|ν) · π(ν)/m(x), ν ∈
R+, our eventual purpose is to prove that the marginal likelihood m(x) =

∫
p(x|ν) ·π(ν)dν

is finite for all values x. By Lemma 1, there exists a constant C independent of ν such that

m(x) =
∫ ∞

0

N

∏
i=1

[
Γ((ν + 1)/2)√

νπΓ(ν/2)
·
(

1 +
x2

i
ν

)− ν+1
2
]
· π(ν)dν ≤ C ·

∫ ∞

0
π(ν)dν.

Because the prior density π(ν) is proper (that is,
∫ ∞

0 π(ν)dν = 1), the upper bound of
the above inequality is finite.

Here, we briefly summarize theoretical results before moving to the next subsection.
Generally, in most Bayesian statistical inference, a proper prior can lead to a proper posterior,
particularly when Gaussian likelihood (which has very light tails) is assumed. However,
this may not be obvious when dealing with a likelihood function based on a fat-tailed dis-
tribution, such as Generalized Pareto distributions [27,28], Student’s t-distribution [1],
α-stable distribution [29], etc., that are frequently used in extreme value theory [30].
Theorem 1 states that a sufficient condition for a valid Bayesian inference in dealing
with the t distribution is the propriety of the prior π(ν). On the other hand, for the case
when the prior π(ν) is improper, several authors [3,18,19] stated that the propriety of the
posterior is generally not guaranteed. Unfortunately, there is no general theorem providing
simple condition under which an improper prior yields the propriety of the posterior for a
particular model, and as such this must be investigated on a case-by-case basis [31].

2.2. Effective Support of the Degrees of Freedom

Given data x = (x1, x2, · · · , xN) ∼ tν(x) (1) with small sample sizes, the performance
of a Bayesian estimator for ν heavily relies on the suitable allocation of the prior probability
mass over the support R+. Ideally, the choice of prior is made such that most of the mass



Axioms 2022, 11, 462 4 of 16

is placed on an interval that contains a range of plausible values for ν that can generate
the data x before observing the data. Such an interval, denoted as ‘Ie ⊂ R+’, is referred
to as effective support of the degrees of freedom ν. The subscript ‘e’ in the notation Ie is
noted as emphasizing ‘effective’. Eventually, the prior probability on the effective support
Π[ν ∈ Ie] =

∫
Ie

π(ν)dν should be large enough to produce a Bayes estimator that performs
well for ν.

Admittedly, a mathematical definition of the effective support Ie in small-sample stud-
ies is not trivial, and may of course vary considerably for different values for observations
x and parameters ν (see the paper by [32] for a relevant theoretical discussion). Most works
have used the interval (0, 25) ⊂ R+ as an effective support Ie [3,18,19,33], although authors
have used (0, 20) or (0, 30) as the effective support as well; throughout this paper, we use
Ie = (0, 25). One conventional reason behind this argument is that in a small-sample case
the observations x = (x1, x2, · · · , xN) sampled from the t-distribution tν(x) (1) with the
degrees of freedom set by either ν = 40, ν = 50, or any other value greater than 25 can
be virtually regarded as the observations from a standard normal distribution. To our
knowledge, however, no research works have statistically justified the use of (0, 25), or,
similarly, (0, 20) or (0, 30), as an effective support in the context of small-sample studies.

In this study, the Monte Carlo simulation method is used to examine the suitability of
the interval Ie = (0, 25) for use as an effective support in small-sample cases. In general,
Monte Carlo methods are widely used when the goal is to characterize certain statistical
properties of a distribution under the finiteness of the sample size rather than resorting
to a large-sample theory [34–37]. Experiments were designed as follows. With a choice
from a list of sample size N ∈ {30, 50, 100, 200, 300, 400, 500}, we generated N observations
x = (x1, x2, · · · , xN) ∼ tν0(x), with the true data generating parameter ν0 selected from the
interval Ie = (0, 25). Here, at each value ν0 we simulated 100, 000 replication data instances
of observations x. From each instance of replication data, we calculated the p-value of the
Shapiro–Wilk test [38] in order to evaluate the normality of the replication data. The null
and alternative hypotheses at each value ν0 ∈ Ie = (0, 25) are thus as follows:

• H0,ν0 : a sample (x1, x2, · · · , xN) simulated from tν0(x) with the truth ν0 ∈ Ie deriving
from a normally distributed population;

• Ha,ν0 : a sample (x1, x2, · · · , xN) simulated from tν0(x) with the truth ν0 ∈ Ie does not
derive from a normally distributed population.

Note that, under the above simulation setup, the source of the non-normality from the
alternative hypothesis Ha,ν0 is mainly due to the heavy tails of observations t.
Finally, we report the median value of the p-values obtained from the replication data
at each true parameter ν0.

Figure 1 displays the results of our experiments. Using the significance level α = 0.05
as the criterion value (shown as the dashed horizontal line in the panel), we calculate a
threshold value ξ̃, dividing the interval Ie = (0, 25) into two sub-intervals, I1

e = (0, ξ̃) and
I2

e = (ξ̃, 25). Then, the former interval I1
e comprises the parameters ν0, generating heavy-

tailed t observations, while the latter interval I2
e comprises the parameters ν0, generating

normal observations. Obviously, the threshold value ξ̃ is a function of the significance level
α and the sample size N; as such, it can be denoted as ξ̃ = ξ̃(α, N), although here we use ξ̃
to avoid cluttered notation. Conceptually, the threshold value ξ̃ may be interpreted as the
transitional point at which the tail-thickness of N observations x = (x1, x2, · · · , xN) ∼ tν0(x)
changes from heavy tails (ν0 ≤ ξ̃) to thin tails (ν0 > ξ̃), resulting in the threshold values
ξ̃ are 2.73 (N = 30), 3.74 (N = 50), 5.52 (N = 100), 7.83 (N = 200), 9.61 (N = 300), 11.00
(N = 400), and 12.21 (N = 500).
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Figure 1. Median of the p-values of the Shapiro–Wilk test from 100, 000 replicated observations
x = (x1, x2, · · · , xN) ∼ tν0 (x) with different sample size N ∈ {30, 50, 100, 200, 300, 400, 500}. The true
data generating parameter ν0 is selected from the effective support Ie = (0, 25).

The results of our Monte Carlo simulation experiments are summarized below:

1. As the sample size N increases from small sample sizes (i.e., N ∈ {30, 50, 100}) to
moderate sample sizes (i.e., N ∈ {200, 300, 400, 500}), the threshold value ξ̃ increases.

2. For the sample size N = 30 (and similarly for N = 50, 100, 200, 300, 400, and 500,
respectively), the values ν > 2.73 (and similarly for ν > 3.74, 5.52, 7.83, 9.61, 11.00, and
12.21, respectively) generate the observations x = (x1, x2, · · · , xN) ∼ tν(x), which are
virtually distributed in a normal distribution (with the type I error 0.05).

3. The interval Ie = (0, 25) effectively covers a wide range of tail-thickness, from heavy-
tailed to thin-tailed data, up to the maximum sample size N = 500 considered in the
experiment. Thus, the interval Ie = (0, 25) can be used as an effective support for a
small-sample study.

2.3. Prior Distributions for the Degrees of Freedom

Many prior distributions for the degrees of freedom ν suggested in the literature are
proper distributions supported on the parameter space R+ [18,39,40]. In Theorem 1, we
have shown that this is a sufficient condition for a valid posterior inference. Examples of
popularly used proper priors are based on an exponential distribution [15] and a gamma
distribution [16]. On the other hand, a Jeffreys prior, as suggested by [3], is improper, yet it
has been shown that the posterior under the Jeffreys prior is proper. In the linear regression
setup, the Jeffreys prior is called the independence Jeffreys prior [18]. Readers may refer
to the papers [3,15,16] for the formulation and derivation of the priors. Considering the
effective support Ie = (0, 25), as previously discussed, we aim to re-examine certain distri-
butional properties of the three priors. Additionally, we study a log-normal distribution as
a viable prior option. To the best of our knowledge, no previous study has reported the
utility of a log-normal prior for robust Bayesian procedures. For the sake of readability,
the four priors are denoted as πJ(ν) (4), πE(ν) (5), πG(ν) (6), and πL(ν) (7), respectively,
with the subsripts on the notations taken from the initials of the priors.

The following are the analytic expressions of the four priors:

(a) Jeffreys prior [3]:

πJ(ν) ∝
(

ν

ν + 3

)1/2{
ψ′
(

ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2

}1/2

, ν ∈ R+, (4)
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where ψ(a) = d{logΓ(a)}/da and ψ′(a) = dψ(a)/da are the digamma and trigamma
functions, respectively. The authors of [3] developed the prior πJ(ν) as an objective
prior on the basis of certain Jeffreys rules [23]. The Jeffreys prior may place enormously
substantial mass close to the zero due to the asymptotic behavior π(ν) = O(ν−1/2) as
ν→ 0+; see Corollary 1 from [3] for more details.

(b) Exponential prior [15]:

πE(ν) = Exp(ν; 0.1) =
1
10

e−ν/10, ν ∈ R+. (5)

The specification of the rate hyperparameter as 0.1 is recommended in [15]
to avoid introducing strong prior information, for similar reasons as for using ob-
jective priors. The prior mean of ν equal to 10 and the prior variance of ν are
equal to 100. Almost 92% of the prior mass is allocated to the effective support
Ie, ΠE[ν ∈ Ie] =

∫ 25
0 πE(ν)dν ≈ 0.917.

(c) Gamma prior [16]:

πG(ν) = Ga(ν; 2, 0.1) =
ν

100
e−ν/10, ν ∈ R+. (6)

The authors of [16] recommend that the shape and rate hyperparameters be set to 2
and 0.1, respectively. Then, the prior mean and variance of ν are equal to 20 and 200,
respectively. The gamma prior πG(ν) (6) allocates nearly 70% of the prior mass to the
effective support Ie, ΠG[ν ∈ Ie] =

∫ 25
0 πG(ν)dν ≈ 0.712.

(d) Log-normal prior:

πL(ν) = logN (ν; 1, 1) =
1

ν
√

2π
exp

[
− {log(ν)− 1}2

2

]
, ν ∈ R+. (7)

We recommend setting the mean and variance hyperparameters to 1. These hyperpa-
rameters are specified on the basis of the sensitivity analysis in Section 4.1. The prior
mean and variance of ν are exp(1 + 1/2) ≈ 4.481 and {exp(1)− 1} · exp(3) ≈ 34.512,
respectively. The log-normal prior πL(ν) (7) places nearly 99% of the prior mass on
the effective support Ie, ΠL[ν ∈ Ie] =

∫ 25
0 πL(ν)dν ≈ 0.986.

Table 1 summarizes the first to second moments and mass allocation of the three
prior densities πE(ν) (5), πG(ν) (6), and πL(ν) (7). As the Jeffreys prior πJ(ν) is im-
proper, we do not report it. Recall that in a small-sample study the transition from fat-
tailed to normal-tailed t-distributed data is typically manifested on the effective interval
Ie = (0, 25) (refer to Figure 1). Therefore, in order to achieve robust Bayesian procedures
to dynamically accommodate data with a wide range of tail thicknesses, it is desirable that
most of the probability of the prior mass is reasonably placed on the effective support Ie.
It is notable that the log-normal and exponential priors place substantial mass (98.6% and
91.7%) on the effective support, while the gamma prior places only 71.2% of the probability
mass on the effective support. In Section 4.2, we conduct simulation studies to investigate
the performances of Bayes estimators based on the priors.

Table 1. Characteristics of prior densities on the interval Ie = (0, 25).

Prior Mean E[ν] Variance V[ν] Π[ν ∈ (0, 10)] Π[ν ∈ (10, 25)] Π[ν ∈ Ie]

πE(ν) 10 100 0.632 0.285 0.917
πG(ν) 20 200 0.264 0.448 0.712
πL(ν) 4.481 34.512 0.903 0.083 0.986

NOTE: Prior mass characteristics of the Jeffreys prior πJ(ν) are not reported due to its impropriety.
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3. Posterior Computation Using Log-Normal Priors
3.1. Elliptical Slice Sampler

In this section, we propose an efficient Markov chain Monte Carlo (MCMC) method
to sample from the posterior density π(ν|x) (2) when provided with the log-normal prior
πL(ν) (7). Due to the non-conjugacy when sampling from the density π(ν|x), the first
solution is to consider the Metropolis-Hastings (MH) algorithm [41,42], the performance of
which can depend highly on the choice of the proposal density [43]. Instead, we can use
the elliptical slice sampler (ESS) algorithm [44], which is known to be efficient when the
prior distribution is a normal distribution. Conceptually, the MH and ESS algorithms are
similar in that both comprise two steps, namely, a proposal step and a criterion step. A
main difference between the two algorithms arises in the criterion step. If a new candidate
does not pass the criterion, then the MH algorithm takes the current state as the next state,
whereas the ESS re-proposes a new candidate until rejection does not take place, rendering
the algorithm rejection-free. Unlike the MH algorithm, which requires the proposal variance
or density, ESS is fully automated, and no tuning is required.

To adapt the ESS to simulate a Markov chain from the posterior density π(ν|x) (2), we
first need to transform ν ∈ R+ to a real-valued parameter η = log ν ∈ R:

π(η|x) = π(ν|x)|ν=eη · |dν/dη| ∝ L(eη) · logN (eη ; 1, 1) · eη = L(eη) · N (η; 1, 1), η ∈ R, (8)

where L(ν) = p(x|ν) = ∏n
i=1 tν(xi). ESS can be used to sample from the transformed

target density π(η|x) (8), after which the drawn sample should be transformed back to
ν = exp η ∈ R+. Algorithm 1 details the ESS in an algorithmic form:

Algorithm 1: ESS to sample from π(ν|x) (2)
Goal : Sampling from the full conditional posterior distribution

π(ν|x) ∝ L(ν) · logN (ν; 1, 1), ν ∈ R+,

where L(ν) = p(x|ν) = ∏n
i=1 tν(xi).

Input : Current state ν(s).
Output : A new state ν(s+1).
a. Change of variable (η = log ν): η(s) = log ν(s).
b. Choose an ellipse: ρ ∼ N (1, 1).

c. Define a criterion function: α(η, η(s)) = min{L(eη)/L(eη(s)), 1} : R→ [0, 1].
d. Choose a threshold and fix: u ∼ Uni f [0, 1].
e. Draw an initial proposal η∗:

φ ∼ Uni f (−π, π]; η∗ = (η(s) − 1) cos φ + (ρ− 1) sin φ + 1.

f. if ( u < α(η∗, η(s)) ) { η(s+1) = η∗ } else {
Define a bracket : (φmin, φmax] = (−π, π].
while ( u ≥ α(η∗, η(s)) ) {

Shrink the bracket and try a new point :
if ( φ > 0 ) φmax = φ else φmin = φ
φ ∼ Uni f (φmin, φmax]; η∗ = (η(s) − 1) cos φ + (ρ− 1) sin φ + 1
}
η(s+1) = η∗

}
g. Change of variable (ν = exp η): ν(s+1) = exp η(s+1).
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In Algorithm 1, the logarithm of the ratio part in the criterion function α(η, η(s)) can
be detailed as follows:

log
(
L(eη)

L(eη(s))

)
= N ·

[
log

(
Γ((eη + 1)/2)√

eηπ · Γ(eη/2)

)
− log

(
Γ((eη(s) + 1)/2)√
eη(s)π · Γ(eη(s)/2)

)]

−
[

eη + 1
2

N

∑
i=1

log

(
1 +

x2
i

eη

)
− eη(s) + 1

2

N

∑
i=1

log

(
1 +

x2
i

eη(s)

)]
.

To calculate the above quantity using R statistical software, the built-in function
lgamma is recommended in order to produce stable calculation of the logarithm of the
gamma function Γ(a) evaluated at (eη + 1)/2, eη/2, (eη(s) + 1)/2, and eη(s)/2.

3.2. Bayesestdft R Package

We developed an R package called bayesestdft to provide Bayesian tools to estimate
the degrees of freedoms by sampling from the posterior distribution π(ν|x) ∝ p(x|ν) · π(ν)
(2) with the likelihood p(x|ν) = ∏n

i=1 tν(xi), the log-normal prior π(ν) = logN (ν; µ, σ2),
and hyperparameters with mean µ and variance σ2. Note that with the specification
µ = σ2 = 1 we have πL(ν) (7). The function BayesLNP(y, ini.nu,S,mu,rho.sq) implements
the ESS (Algorithm 1) with the following inputs:

• y : N-dimensional vector of continuous observations supported on R, x = (x1, · · · , xN).
• ini.nu : the initial posterior sample value, ν(1) (Default = 1).
• S : the number of posterior samples, S (Default = 1000).
• mu : mean of the log-normal prior density, µ (Default = 1).
• sigma.sq : variance of the log-normal prior density, σ2 (Default = 1).

The output of the function BayesLNP is the S-dimensional vector of posterior samples,
that is, {ν(s)}S

s=1, and is drawn from the posterior density π(ν|x).
In order to demonstrate the estimation performance of the Bayes estimator based

on the log-normal prior πL(ν) (7), we conducted the following simulation experiments.
We generated N = 100 observations x = (x1, · · · , xN) ∼ tν0(x) with the truth value ν0
specified by ν0 = 0.1, 1, and 5, respectively, and then estimated the parameter ν using the
function BayesLNP for each of the three scenarios. To that end, we used the following
command:

R> library(devtools)
R> devtools :: install_github("yain22/bayesestdft")
R> library(bayesestdft)
R> x1 = rt(n=100,df=0.1) ; x2 = rt(n=100,df=1) ; x3 = rt(n=100,df=5)
R> nu.1 = BayesLNP(x1) ; nu.2 = BayesLNP(x2) ; nu.3 = BayesLNP(x3)

The outputs nu.1, nu.2, and nu.3 are S = 1000 number of posterior samples from each
of the scenarios. Figure 2 displays the trace plots after burning the first hundred posterior
samples. The results show that ESS (Algorithm 1) possesses a good mixing property and a
reasonably high accuracy. More thorough simulation studies are described in Section 4.
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Figure 2. Trace plots for the three simulation experiments. Training data generated from Student
t-distribution tν0 (x) with ν0 = 0.1 (left), ν0 = 1 (middle), and ν0 = 5 (right).

The package bayesestdft includes a function BayesJeffreys to implement an MCMC
algorithm to sample from the posterior distribution based on the Jeffreys prior πJ(ν) (4).
The sampling engines are a random walk Metropolis algorithm [45] and a Metropolis-
adjusted Langevin algorithm (MALA) [46,47]. The relevant gradient calculation for imple-
menting MALA is performed using the numDeriv R package; users can see the manual in
help(BayesJeffreys) for more detail.

4. Numerical Studies
4.1. Sensitivity Analysis for a Log-Normal Prior

This subsection presents frequentist properties of Bayes estimators of the parameter
ν based on a log-normal prior π(ν; µ, σ2) = logN (ν; µ, σ2) with four different choices of
the hyperparameters (µ, σ2) ∈ {(0, 1), (0, 2), (1, 1), (1, 2)}. The purpose of this analysis is
to measure the impact of the four log-normal priors on the posterior inference about ν
and select the most promising hyperparameters out of the four choices, which are then
coherently used in the subsequent analyses. As for performance metrics, we report the
frequentist mean squared error (MSE) and the frequentist coverage of 95% credible intervals.
These are widely used in assessing the accuracy of robust Bayesian procedures [3,19]. For
the MSE, we report the median value of the MSEs based on 1000 replications.

The detailed simulation procedures are explained here. We considered drawing
independent and identically distributed N samples x = (x1, x2, · · · , xN) from the student t-
distribution tν0(x) (1) with the true data generating parameter ν0 specified from the effective
support Ie = (0, 25). After specifying a prior π(ν) from the four prior options above (which
only differ in the hyperparameters), we obtain the posterior mean ν̂ = E[ν|x] and the 95%
credible interval (Lα(x), Uα(x)) (α = 0.95) based on posterior samples {ν(s)}S

s=1 ∼ π(ν|x).
For the purpose of the stabilization to the stationary distribution, we draw 1, 000 samples
from the posterior π(ν|x), followed by 500 burn-in and 10 thinning. As a result, for a single
replicated data x ∼ tν0(x) at each evaluation point ν0 ∈ Ie = (0, 25), we can calculate
the square root of the relative MSE

√
MSE(ν0)/ν0 = |ν̂− ν0|/ν0 and a coverage indicator

δ(ν0) = I[ν0 ∈ (Lα(x), Uα(x))], where δ(ν0) = 1 if ν0 ∈ (Lα(x), Uα(x)) and 0 otherwise.
In particular, the frequentist coverage of 95% credible interval (which is mathematically
defined as Prν0 [ν0 ∈ (Lα(x), Uα(x))]) can be approximated by taking the mean of the
resulting values δ(ν0) across the replications. A smaller value of the relative MSE indicates
more accurate estimation. For the frequentist coverage of the 95% credible interval, a value
closer to 0.95 indicates better coverage performance.

The results of the simulation are shown in Figures 3 and 4. As expected, for all prior
choices the relative MSEs are smaller for N = 100 than for N = 30, and the coverage
properties are closer to 95% for N = 100 than for N = 30 across the values ν0 ∈ Ie =
(0, 25). For both N = 30 and N = 100 the performance of the posterior mean based on
the standard log-normal prior π(ν) = logN (ν; 0, 1) is not good if ν0 is greater than 10.
This is because the standard log-normal prior places too much mass on the interval (0, 10),
and hence the estimation performance deteriorates as ν0 becomes larger. Although the prior
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π(ν) = logN (ν; 1, 2) produces the best frequentist coverage with a 95% credible interval
over the wide range of the effective support Ie, its MSE is higher than those of other priors
for ν0 ∈ (3, 15) (N = 30) and ν0 ∈ (5, 17) (N = 100). The performance based on the priors
π(ν) = logN (ν; 1, 1) and π(ν) = logN (ν; 0, 2) in terms of MSE is quite similar for N = 30,
although the former performs better than the latter for N = 100 on the values ν0 ∈ (0, 17).
Based on these results, we opted to use πL(ν) = logN (ν; 1, 1) (7) as the default choice of
the log-normal prior, as it produces reasonably stable estimation on the effective support
Ie = (0, 25) compared to the other choices.

N = 30 N = 100
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Figure 3. Frequentist properties of the posterior mean ν̂ = E[ν|x] based on the four log-normal
priors π(ν) = logN (ν; µ, σ2) with (µ, σ2) ∈ {(0, 1), (0, 2), (1, 1), (1, 2)} for sample sizes N = 30 and
N = 100. The y-axis value is the square root of the relative MSE and the x-axis value is the true
data-generating parameter on the effective support Ie = (0, 25).
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Figure 4. Frequentist coverage of 95% credible intervals for the degrees of freedom based on the four
log-normal priors π(ν) = logN (ν; µ, σ2) with (µ, σ2) ∈ {(0, 1), (0, 2), (1, 1), (1, 2)} for sample sizes
N = 30 and N = 100. The horizontal dashed line represents 0.95 target coverage.

The sensitivity analysis described in this section considered four choices of hyper-
parameters. While it would obviously be more desirable to select the hyperparameters
from a larger number of options, the results show that our choice of π(ν) = logN (ν; 1, 1)
produces reasonably accurate estimation compared to other priors in both numerical and
real data studies.
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4.2. Numerical Comparison Using the Jeffreys, Exponential, Gamma, and Log-Normal Priors

This subsection compares frequentist properties of posterior inference based on the
four priors πJ(ν) (4), πE(ν) (5), πG(ν) (6), and πL(ν) (7). The simulation designs are
explained in Section 4.1. Additionally, we consider the maximum likelihood estimator
(MLE) of ν to examine the performance of the frequentist approach compared to Bayesian
approaches in estimating the parameter ν. For the MLE, in order to assess the coverage of
95% confidence interval, we used a 95% bootstrap confidence interval based on the MLE
of ν [48], as the exact 95% confidence interval was not available. For implementation, the
functions BayesJeffreys and BayesLNP were used to obtain Bayes estimators for ν based
on the priors πJ(ν) (4) and πL(ν) (7), for which the sampling engines were ESS and MALA,
respectively. To obtain Bayes estimators based on the priors πE(ν) (5) and πG(ν) (6), we
used Stan [49], which uses a Hamiltonian Monte Carlo algorithm [50]. Finally, the MLE of
ν was computed by using the function fitdistr(densfun = “t”) within library(MASS).

The results of the simulation are shown in Figures 5 and 6. As expected, when using
Bayesian and frequentist methods, the relative MSEs are smaller for N = 100 than for
N = 30 across the values ν0 ∈ Ie. For the Bayesian methods, the coverage properties tend
to improve (that is, are closer to 0.95) for N = 100 than for N = 30. In contrast, when using
frequentist methods the coverage property becomes more conservative (that is, less than
0.95) for N = 100 than for N = 30 across the values ν0 ∈ Ie. The Bayes estimator based on
the Jeffreys prior πJ(ν) (4) results in relatively lower MSE then the MLE over the values
ν0 ∈ Ie, in agreement with [3]. This is to some extent expected, as MLE can generally suffer
in small-sample studies [51]. It is important to note that no Bayes estimator dominates
other estimators over the entire interval Ie. In other words, each Bayes estimator has its
own region where the estimator is non-inferior to others.

N = 30 N = 100
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0
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logN(1,1)
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Figure 5. Frequentist properties of the posterior mean based on the four priors (πJ(ν) (4), πE(ν) (5),
πG(ν) (6), and πL(ν) (7)) and MLE of ν, for sample sizes N = 30 and N = 100.
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Figure 6. Frequentist coverage of 95% credible intervals for the degrees of freedom based on the
four priors (πJ(ν) (4), πE(ν) (5), πG(ν) (6), and πL(ν) (7)) for sample sizes N = 30 and N = 100.
The 95% bootstrap confidence interval based on MLE of ν is used to describe the 95% coverage for
the frequentist analysis.

The followings key points summarize the results of the simulations:

(i) Bayes estimators based on the log-normal prior πL(ν) (7) and the Jeffreys prior πJ(ν)
(4) have almost equal performance, and outperform other estimators for ν0 ∈ (0, 5)
(N = 30) and ν0 ∈ (0, 6) (N = 100).

(ii) The Bayes estimator based on the log-normal prior πL(ν) (7) outperforms other esti-
mators for ν0 ∈ (5, 12) (N = 30) and ν0 ∈ (6, 15) (N = 100).

(iii) The Bayes estimator based on the exponential prior πE(ν) (5) outperforms other
estimators for ν0 ∈ (12, 19) (N = 30) and ν0 ∈ (15, 22.5) (N = 100);

(iv) The Bayes estimator based on the gamma prior πG(ν) (6) outperforms other estimators
for ν0 ∈ (19, 25) (N = 30) and ν0 ∈ (22.5, 25) (N = 100).

5. Real Data Analysis

To further assess the performance of the Bayes estimators based on the priors πJ(ν) (4),
πE(ν) (5), πG(ν) (6), and πL(ν) (7), we analyzed a sample of the daily index values from
four countries: the United States (S&P500), Japan (NIKKEI225), Germany (DAX Index),
and South Korea (KOSPI). In particular, we considered the data from 2 June 2009 to 30
October 2009, amounting to around 100 observations. The actual analysis was performed
on the daily log-rate returns multiplied by 100, that is, xi = log(Xi+1/Xi)× 100, where Xi
is the market index on the i-th trading day. The transformed data for the period of interest
are plotted in Figure 7. It can be seen that the series are stationary and that their variances
can be reasonably considered as constant over the relevant period. The dataset used here
can be loaded using data(index_return) in the R package bayesestdft.
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Figure 7. Daily returns of the index values from four countries for the period spanning 6 May 2009 to
30 September 2009.

Table 2 lists the basic descriptive statistics of the index return series from the four
countries. Note that the kurtosis is larger than 3 for every country, and even though
the distribution of the returns does not have tails much heavier than a normal distribu-
tion it seems to be appropriate to consider a t model. Several researchers have found
that Student’s t-distribution is the best marginal distribution for index returns [11,52].
Specifically, the model is xi ∼ tν(x), (i = 1, · · · , N), with sample sizes N = 105 (United
States), 101 (Japan), 107 (Germany), and 106 (South Korea) and the goal of estimating the
degrees of the freedom ν > 0.

Table 2. Descriptive statistics of the daily index returns.

Statistics United States Japan Germany South Korea

Mean 0.1753 0.1199 0.1368 0.1695
Variance 1.5040 2.1411 2.2459 1.4347
Skewness −0.2052 −0.1317 −0.1334 −0.2722
Kurtosis 3.2536 3.0309 3.0086 3.8631

The results of the posterior inference as summarized by posterior mean and 95% credi-
ble interval on the parameter ν are reported in Table 3. Additionally, in order to compare
the model fit, we report the deviance information criterion (DIC) based on the posterior
samples; see Equation (10) in [53] for the analytic formula of the DIC. A smaller value of
DIC indicates better modeling fitting. The best inference result is in bold in the table from
each country. It can be seen that the Bayes estimator based on the log-normal prior πL(ν)
(7) performs the best for the series from the United States, Japan, and South Korea, while
the Jeffreys prior πJ(ν) (4) produces the best model fitting for the series from Germany.
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Table 3. Estimation results based on the four priors.

Prior United States Japan Germany South Korea

πJ(ν)
5.63 (2.67, 11.59) 3.66 (2.08, 6.63) 3.31 (1.89, 5.73) 5.56 (2.64, 11.28)

344.15 373.56 401.24 338.20

πE(ν)
7.82 (3.10, 17.91) 4.37 (2.54, 7.28) 3.91 (2.20, 6.88) 7.08 (2.92, 14.18)

344.05 374.01 402.66 338.06

πG(ν)
10.52 (3.82, 25.91) 4.94 (2.54, 10.12) 4.26 (2.39, 7.62) 9.86 (3.82, 25.88)

346.47 377.59 403.62 340.65

πL(ν)
6.24 (2.78, 14.63) 3.93 (2.21, 7.85) 3.56 (1.95, 6.09) 5.74 (2.88, 11.31)

343.55 373.55 402.1 337.71
NOTE: Contents of table are posterior mean of ν, 95% credible interval of ν, and DIC. The best outcome in terms
of DIC for each country is in bold.

6. Concluding Remarks

In this paper, we studied three popular existing priors, namely, the Jeffreys [3], expo-
nential [15], and gamma prior [16] distributions, and suggested a log-normal distribution
as an alternative to produce accurate estimation for the number of degrees of freedom
for Student’s t-distribution in a small-sample study. The Jeffreys prior has no hyperpa-
rameter. Estimation results based on the exponential and gamma priors can be sensitive
to the choice of their hyperparameters, and we therefore set these values as the original
authors suggested [15,16]. The use of a log-normal prior represents a new trial; hence,
we performed a sensitivity analysis to select reasonable hyperparameters. The posterior
computation algorithm used to calculate the Bayes estimator based on the log-normal prior
possesses good operating characteristics in terms of balancing sampling and estimation
accuracy without requiring expert-tuning. We were able to fairly compare the small-sample
performance of the four priors through simulation studies for both an effective support
and a real data application. The results show that the performance of the Bayes estimator
based on the log-normal prior is reasonably good compared to the others. This elucidates
the usefulness of the log-normal prior for more complex model settings such as linear
regression, nonparametric regression, time-series analysis, and machine learning models,
when t errors would be more desirable than using Gaussian errors to carry out robust
Bayesian analyses [54].
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