The Existence of Weak Solutions for the Vorticity Equation Related to the Stratosphere in a Rotating Spherical Coordinate System
Abstract
:1. Introduction
2. Stratospheric Planetary Flows Equation
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Constantin, A.; Johnson, R.S. On the modelling of large-scale atmospheric flow. J. Differ. Equ. 2021, 285, 751–798. [Google Scholar] [CrossRef]
- Constantin, A.; Johnson, R.S. On the propagation of waves in the atmosphere. Proc. R. Soc. Math. Phys. Eng. Sci. 2020, 477, 20200424. [Google Scholar] [CrossRef] [PubMed]
- Vallis, G.K. Atmospheric and Oceanic Fluid Dynamics; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Dellar, P.J. Variations on a beta-plane: Derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 2011, 674, 174–195. [Google Scholar] [CrossRef]
- Constantin, A.; Johnson, R.S. Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. Math. Phys. Eng. Sci. 2017, 473, 20170063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.I. Azimuthal equatorial flows in spherical coordinates with discontinuous stratification. Phys. Fluids 2021, 33, 026602. [Google Scholar] [CrossRef]
- Martin, C.I.; Quirchmayr, R. Exact solutions and internal waves for the Antarctic Circumpolar Current in spherical coordinates. Stud. Appl. Math. 2022, 148, 1021–1039. [Google Scholar] [CrossRef]
- Constantin, A.; Johnson, R.S. An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 2016, 46, 3585–3594. [Google Scholar] [CrossRef]
- Constantin, A.; Johnson, R.S. An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 2016, 46, 1935–1945. [Google Scholar] [CrossRef]
- Chu, J. Monotone solutions of a nonlinear differential equation for geophysical fluid flows. Nonlinear Anal. 2018, 166, 144–153. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Zhang, W. On the nonlocal boundary value problem of geophysical fluid flows. Z. Angew. Math. Phys. 2021, 72, 27. [Google Scholar] [CrossRef]
- Haziot, S.V. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discret. Contin. Dyn. Syst. 2019, 39, 4415–4427. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.I.; Quirchmayr, R. A steady stratied purely azimuthal flow representing the Antarctic Circumpolar Current. Monatsh. Math. 2020, 192, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.I.; Quirchmayr, R. Explicit and exact solutions concerning the Antarctic Circumpolar Current with variable density in spherical coordinate. J. Math. Phys. 2019, 60, 101505. [Google Scholar] [CrossRef]
- Constantin, A.; Johnson, R.S. Large-scale oceanic currents as shallow water asymptotic solutions of the Navier-Stokes equation in rotating spherical coordinates. Deep.-Sea Res. Part II Top. Stud. Oceanogr. 2019, 160, 32–40. [Google Scholar] [CrossRef]
- Constantin, A.; Johnson, R.S. Ekman-type solutions for shallow-water flows on a rotating sphere: A new perspective on a classical problem. Phys. Fluids 2019, 31, 021401. [Google Scholar] [CrossRef] [Green Version]
- Catling, D.C. Planetary atmospheres. In Treatise on Geophysics; Schubert, G., Ed.; Elsevier: Oxford, UK, 2015; pp. 429–472. [Google Scholar]
- Gill, A.E. Atmosphere-Ocean Dynamics; Academic Press: Cambridge, UK, 1982. [Google Scholar]
- Constantin, A.; Germain, P. Stratospheric planetary flows from the perspective of the Euler equation on a rotating sphere. Arch. Ration. Mech. Anal. 2022, 245, 587–644. [Google Scholar] [CrossRef]
- Dowling, T.E. Dynamics of Jovian atmospheres. Annu. Rev. Fluid Mech. 1995, 27, 293–334. [Google Scholar] [CrossRef]
- Lunine, J.I. The atmospheres of Uranus and Neptune. Annu. Rev. Astron. Astrophys. 1993, 31, 217–263. [Google Scholar] [CrossRef]
- Marynets, K. A nonlinear two-point boundary-value problem in geophysics. Monatsh. Math. 2019, 188, 287–295. [Google Scholar] [CrossRef]
- Marynets, K. On a two-point boundary-value problem in geophysics. Appl. Anal. 2019, 98, 553–560. [Google Scholar] [CrossRef]
- Marynets, K. A weighted Sturm-Liouville problem related to ocean flows. J. Math. Fluid Mech. 2018, 20, 929–935. [Google Scholar] [CrossRef]
- Chu, J. On a differential equation arising in geophysics. Monatsh. Math. 2018, 187, 499–508. [Google Scholar] [CrossRef]
- Chu, J. On a nonlinear model for arctic gyres. Ann. Mat. Pura Appl. 2018, 197, 651–659. [Google Scholar] [CrossRef]
- Chu, J. On an infinite-interval boundary-value problem in geophysics. Monatsh. Math. 2019, 188, 621–628. [Google Scholar] [CrossRef]
- Chu, J.; Marynets, K. Nonlinear differential equations modeling the Antarctic Circumpolar Current. J. Math. Fluid Mech. 2021, 23, 92. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.F.; Wen, Q.; O’Regan, D. Existence and uniqueness results for modeling jet flow of the Antarctic Circumpolar Current. Monatsh. Math. 2021, 194, 601–621. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Fečkan, M. Periodic boundary value problem for second-order differential equations from geophysical fluid flows. Monatsh. Math. 2021, 195, 523–540. [Google Scholar] [CrossRef]
- Fečkan, M.; Li, Q.; Wang, J. Existence and Ulam-Hyers stability of positive solutions for a nonlinear model for the Antarctic Circumpolar Current. Monatsh. Math. 2022, 197, 419–434. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Fečkan, M. Existence and uniqueness results for a second order differential equation for the ocean flow in arctic gyres. Monatsh. Math. 2020, 193, 177–192. [Google Scholar] [CrossRef]
- Zhang, W.; Fečkan, M.; Wang, J. Positive solutions to integral boundary value problems from geophysical fluid flows. Monatsh. Math. 2020, 193, 901–925. [Google Scholar] [CrossRef]
Planet | |||||||||
---|---|---|---|---|---|---|---|---|---|
Earth | 40 km | 6371 km | 9.8 m/s2 | 7.27 × 10−5 rad/s | m/s | 50 m/s | 9 | 6 × 10−3 | 2 × 10−5 |
Saturn | 200 km | 58,232 km | 10.4 m/s2 | rad/s | m/s | 150 m/s | 63 | ||
Uranus | 150 km | 25,362 km | 8.8 m/s2 | rad/s | m/s | 150 m/s | 18 | ||
Jupiter | 270 km | 69,911 km | 24.8 m/s2 | rad/s | m/s | 150 m/s | 82 | ||
Neptune | 200 km | 24,622 km | 11.1 m/s2 | rad/s | m/s | 200 m/s | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Fečkan, M.; Wang, J. The Existence of Weak Solutions for the Vorticity Equation Related to the Stratosphere in a Rotating Spherical Coordinate System. Axioms 2022, 11, 347. https://doi.org/10.3390/axioms11070347
Zhang W, Fečkan M, Wang J. The Existence of Weak Solutions for the Vorticity Equation Related to the Stratosphere in a Rotating Spherical Coordinate System. Axioms. 2022; 11(7):347. https://doi.org/10.3390/axioms11070347
Chicago/Turabian StyleZhang, Wenlin, Michal Fečkan, and Jinrong Wang. 2022. "The Existence of Weak Solutions for the Vorticity Equation Related to the Stratosphere in a Rotating Spherical Coordinate System" Axioms 11, no. 7: 347. https://doi.org/10.3390/axioms11070347
APA StyleZhang, W., Fečkan, M., & Wang, J. (2022). The Existence of Weak Solutions for the Vorticity Equation Related to the Stratosphere in a Rotating Spherical Coordinate System. Axioms, 11(7), 347. https://doi.org/10.3390/axioms11070347