Numerical Processes for Approximating Solutions of Nonlinear Equations
Abstract
:1. Introduction
2. Local Analysis
- (A1)
- There exists a simple solution of equation
- (A2)
- for all and some Set
- (A3)
- for all and some
- (A4)
- for all and some constant
- (A5)
- for all and some constant
- (A6)
3. Semi-Local Analysis
- (H1)
- There exist such that and
- (H2)
- for all and some Set
- (H3)
- (H4)
- for some to be given later.
4. Special Cases
- (H1)
- There exists such that and
- (H2)
- (H3)
- For each
- (H4)
- for some to be given later.
- (M1)
- For each
- (M2)
- For eachIt follows by these definitions thatHence, any analysis using L improves earlier ones using or K (see also the numerical section). The sequence defined by
5. Numerical Example
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newton’s method. J. Complex. 2012, 28, 364–387. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
- Argyros, I.K. Unified Convergence Criteria for Iterative Banach Space Valued Methods with Applications. Mathematics 2021, 9, 1942. [Google Scholar] [CrossRef]
- Argyros, I.K. The Theory and Applications of Iteration Methods, 2nd ed.; Engineering Series; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2022. [Google Scholar]
- Kou, J.; Wang, X.; Li, Y. Some eight order root finding three-step methods, Commun. Nonlinear Sci. Numer. Simulat. 2010, 15, 536–544. [Google Scholar] [CrossRef]
- Argyros, I.K.; Magrenan, A.A. A Contemporary Study of Iterative Methods; Elsevier (Academic Press): New York, NY, USA, 2018. [Google Scholar]
- Grau-Sanchez, M.; Grau, A.; Noguera, M. Ostrowski type methods for solving system of nonlinear equations. Appl. Math. Comput. 2011, 218, 2377–2385. [Google Scholar] [CrossRef]
- Homeier, H.H.H. A modified Newton method with cubic convergence: The multivariate case. J. Comput. Appl. Math. 2004, 169, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Kantorovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton–Kantorovich type theorems. J. Complex. 2010, 26, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Sharma, J.R.; Arora, H. Efficient derivative - free numerical methods for solving systems of nonlinear equations. Comp. Appl. Math. 2016, 35, 269–284. [Google Scholar] [CrossRef]
- Xiao, X.; Yin, H. Achieving higher order of convergence for solving systems of nonlinear equations. Appl. Math. Comput. 2017, 311, 251–261. [Google Scholar] [CrossRef]
- Noor, M.A.; Waseem, M. Some iterative methods for solving a system of nonlinear equations. Comput. Math. Appl. 2009, 57, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Ezquerro, J.A.; Hernandez, M.A. Newton’s Method: An Updated Approach of Kantorovich’s Theory; Birkhãuser: Cham, Switzerland, 2018. [Google Scholar]
- Nashed, M.Z.; Chen, X. Convergence of Newton-like methods for singular operator equations using outer inverses. Numer. Math. 1993, 66, 235–257. [Google Scholar] [CrossRef]
- Shakhno, S.M.; Gnatyshyn, O.P. On an iterative Method of order 1.839... for solving nonlinear least squares problems. Appl. Math. Appl. 2005, 161, 253–264. [Google Scholar]
- Verma, R. New Trends in Fractional Programming; Nova Science Publisher: New York, NY, USA, 2019. [Google Scholar]
n | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
0.2330 | 0.2945 | 0.3008 | 0.3009 | 0.3009 | 0.3009 | |
0.2000 | 0.2896 | 0.3008 | 0.3009 | 0.3009 | 0.3009 | |
0.2341 | 0.2946 | 0.3008 | 0.3009 | 0.3009 | 0.3009 | |
0.5200 | 0.7530 | 0.7820 | 0.7824 | 0.7824 | 0.7824 | |
0.6058 | 0.7658 | 0.7822 | 0.7824 | 0.7824 | 0.7824 | |
0.6087 | 0.7659 | 0.7822 | 0.7824 | 0.7824 | 0.7824 |
n | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1.1609 | 0.2067 | 0.0846 | 0.0377 | 0.0174 | 0.0081 | |
0.3121 | 0.1640 | 0.0695 | 0.0313 | 0.0145 | 0.0068 | |
0.8500 | 0.3985 | 0.1399 | 0.0605 | 0.0274 | 0.0127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regmi, S.; Argyros, I.K.; George, S.; Argyros, C.I. Numerical Processes for Approximating Solutions of Nonlinear Equations. Axioms 2022, 11, 307. https://doi.org/10.3390/axioms11070307
Regmi S, Argyros IK, George S, Argyros CI. Numerical Processes for Approximating Solutions of Nonlinear Equations. Axioms. 2022; 11(7):307. https://doi.org/10.3390/axioms11070307
Chicago/Turabian StyleRegmi, Samundra, Ioannis K. Argyros, Santhosh George, and Christopher I. Argyros. 2022. "Numerical Processes for Approximating Solutions of Nonlinear Equations" Axioms 11, no. 7: 307. https://doi.org/10.3390/axioms11070307
APA StyleRegmi, S., Argyros, I. K., George, S., & Argyros, C. I. (2022). Numerical Processes for Approximating Solutions of Nonlinear Equations. Axioms, 11(7), 307. https://doi.org/10.3390/axioms11070307