On Fractional Inequalities Using Generalized Proportional Hadamard Fractional Integral Operator
Abstract
:1. Introduction
2. Preliminary
3. Fractional Integral Inequalities for Extended Chebyshev Functional
4. Some Other Fractional Integral Inequalities
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anastassiou, G.A. Fractional Differentiation Inequalities; Springer: New York, NY, USA, 2009. [Google Scholar]
- Dahmani, Z. On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. [Google Scholar]
- Dahmani, Z. The Riemann-Liouville operator to generate some new inequalities. Int. J. Nonlinear Sci. 2011, 12, 452–455. [Google Scholar]
- Dahmani, Z. Some results associated with fractional integrals involving the extended Chebyshev. Acta Univ. Apulensis Math. Inform. 2011, 27, 217–224. [Google Scholar]
- Dahmani, Z.; Tabharit, L.; Taf, S. New generalisations of Gruss inequality using Riemann-Liouville fractional integrals. Bull. Math. Anal. Appl. 2010, 2, 93–99. [Google Scholar]
- Denton, Z.; Vatsala, A.S. Fractional integral inequalities and application. Comput. Math. Appl. 2010, 59, 1087–1094. [Google Scholar] [CrossRef] [Green Version]
- Chinchane, V.L.; Pachpatte, D.B. A note on some integral inequalities via Hadamard integral. J. Fract. Calc. Appl. 2013, 4, 1–5. [Google Scholar]
- Chinchane, V.L. Certain inequalities using Saigo fractional integral operator. Facta Univ. Ser. Math. Inform. 2014, 29, 343–350. [Google Scholar]
- Kiryakova, V. On two Saigo’s fractional integral operator in the class of univalent functions. Fract. Calc. Appl. Anal. 2006, 9, 159–176. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Chebyshev type inequalities for the Saigo fractional integral and their q-analogues. J. Math. Inequal. 2013, 7, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Kyushu Univ. 1978, 11, 135–143. [Google Scholar]
- Che, Y.; Abo Keir, M. Study on the training model of football movement trajectory drop point based on fractional differential equation. Appl. Math. Nonlinear Sci. 2021. [Google Scholar] [CrossRef]
- Nisar, K.S.; Rahman, G.; Khan, A. Some new inequalities for generalized fractional conformable integral operators. Adv. Differ. Equ. 2019, 2019, 427. [Google Scholar] [CrossRef] [Green Version]
- Nisar, K.S.; Logeswari, K.; Vijayaraj, V.; Baskonus, H.M.; Ravichandran, C. Fractional Order Modeling the Gemini Virus in Capsicum annuum with Optimal Control. Fractal Fract. 2022, 6, 61. [Google Scholar] [CrossRef]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L. Certain fractional integral inequalities using generalized Katugampola fractional integral operator. Malaya J. Math. 2020, 3, 791–797. [Google Scholar]
- Set, E.; Choi, J.; Mumcu, L. Chebyshev type inequalities involving generalized Katugampola fractional integral operators. Tamkang J. Math. 2019, 4, 381–390. [Google Scholar] [CrossRef]
- Chinchane, V.L. New approach to Minkowski fractional inequalities using generalized K-fractional integral operator. J. Indian. Math. Soc. 2018, 85, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Chinchane, V.L. On Chebyshev type inequalities using generalized K-fractional integral operator. Progr. Fract. Differ. Appl. 2017, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Prabhakaran, A.R.; Rao, K.S. Saigo operator of fractional integration of Hypergeometric functions. Int. J. Pure Appl. Math. 2012, 81, 755–763. [Google Scholar]
- Virchenko, N.; Lisetska, O. On some fractional integral operators involving generalized Gauss hypergeometric functions. Appl. Appl. Math. 2010, 5, 1418–1427. [Google Scholar]
- Aghili, A. Complete solution for the time fractional diffusion problem with mixed boundary conditions by operational method. Appl. Math. Nonlinear Sci. 2021, 6, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Akdemir, A.; Deniz, E.; Yüksel, E. On Some Integral Inequalities via Conformable Fractional Integrals. Appl. Math. Nonlinear Sci. 2021, 6, 489–498. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Cattani, C.; Baishya, C.; Baskonus, H.M. Modified Predictor—Corrector method for the numerical solution of a fractional-order SIR model with 2019-nCoV. Fractal Fract. 2022, 6, 92. [Google Scholar] [CrossRef]
- Gao, J.; Alotaibi, F.; Ismail, R. The model of sugar metabolism and exercise energy expenditure based on fractional linear regression equation. Appl. Math. Nonlinear Sci. 2021, 1–9. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Odabasi, M.; Tariq, K.U.; Abazari, R.; Baskonus, H.M. On the conformable nonlinear Schrödinger equation with second order spatiotemporal and group velocity dispersion coefficients. Chin. J. Phys. 2021, 72, 403–414. [Google Scholar] [CrossRef]
- Veeresha, P.; Malagi, N.S.; Prakasha, D.G.; Baskonus, H.M. An efficient technique to analyze the fractional model of vector-borne diseases. Phys. Scr. 2022, 97, 054004. [Google Scholar] [CrossRef]
- Veeresha, P.; Ilhan, E.; Prakasha, D.G.; Baskonus, H.M.; Wei, G. A new numerical investigation of fractional order susceptible-infected-recovered epidemic model of childhood disease. Alex. Eng. J. 2022, 61, 1747–1756. [Google Scholar] [CrossRef]
- Wen, L.; Liu, H.; Chen, J.; Fakieh, B.; Shorman, S. Fractional linear regression equation in agricultural disaster assessment model based on geographic information system analysis technology. Appl. Math. Nonlinear Sci. 2021, 1–10. [Google Scholar] [CrossRef]
- Wei, G.; Baskonus, H.M. Deeper investigation of modified epidemiological computer virus model containing the Caputo operator. Chaos Solitons Fractals 2022, 158, 112050. [Google Scholar] [CrossRef]
- Zhirong, G.; Alghazzawi, D. Optimal solution of fractional differential equations in solving the relief of college students’ mental obstacles. Appl. Math. Nonlinear Sci. 2021, 1–8. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, J.; Alkhathlan, A. Informatisation of educational reform based on fractional differential equations. Appl. Math. Nonlinear Sci. 2021, 1–11. [Google Scholar] [CrossRef]
- Anber, A.; Dahmani, Z.; Bendoukha, B. New integral inequalities of Feng Qi type via Riemann-Liouville fractional integration. Facta Univ. (Nis) Ser. Math. Inform. 2012, 27, 13–22. [Google Scholar]
- Panchal, S.K.; Chinchane, V.L.; Nale, A.B. On weighted fractional inequalities using generalized Katugampola fractional integral operator. Fract. Differ. Calc. 2020, 2, 255–266. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pećarić, J.; Siddique, U. Generalized Minkowski-type fractional inequalities involving extended Mittag-Leffler function. J. Indian Math. Soc. 2020, 3–4, 137–147. [Google Scholar] [CrossRef]
- Rahman, G.; Abdejawad, T.; Khan, A.; Nisar, K.S. Some fractional proportional integral inequalities. J. Inequal. Appl. 2019, 2019, 244. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Khan, A.; Abdejawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019, 2019, 287. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Abdejawad, T.; Ullah, S. Certain fractional proportional integral inequalities via convex functions. Mathematics 2020, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 247, 1–16. [Google Scholar] [CrossRef]
- Jarad, F.; Abdejawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Rahman, G.; Nisar, K.S.; Abdejawad, T. Certain Hadamard proportional fractional integral inequalities. Mathematics 2020, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Abdejawad, T.; Jarad, F.; Khan, A.; Nisar, K.S. Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv. Differ. Equ. 2019, 2019, 454. [Google Scholar] [CrossRef]
- Nisar, K.S.; Rahman, G.; Mehrez, K. Chebyshev type inequalities via generalized fractional conformable integrals. J. Inequal. Appl. 2019, 245, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nisar, K.S.; Tassadiq, A.; Rahman, G.; Khan, A. Some inequalities via fractional conformable integral operators. J. Inequal. Appl. 2019, 2019, 271. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Rahman, G.; Nisar, K.S.; Samraiz, M. Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals. Adv. Differ. Equ. 2020, 96, 1–9. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new Definition of Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Losada, J.; Nieto, J.J. Properties of a New Fractional Derivative without Singular Kernel. Progr. Fract. Differ. Appl. 2015, 1, 87–92. [Google Scholar]
- Nale, A.B.; Panchal, S.K.; Chinchane, V.L. Some Minkowski-type inequalities using generalized proportional Hadamard fractional integral operators. Filomat 2021, 35, 2973–2984. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Abstract fractional Calculus for m-accretive operators. Int. J. Appl. Math. 2021, 34, 1–41. [Google Scholar] [CrossRef]
- Yosida, K. Functional Analysis; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1980. [Google Scholar]
- Chebyshev, P.L. Sur les expressions approximatives des intégrales définies par les autes entre les mêmes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
- Anastassiou, G.A.; Hooshmandasl, M.R.; Ghasemi, A.; Moftakharzadeh, F. Montgomery identities for fractional integrals and related fractional inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 97. [Google Scholar]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequality. J. Inequal. Pure Appl. Math. 2009, 10, 86. [Google Scholar]
- Dragomir, S.S. Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. 2002, 31, 397–415. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivative Theory and Application; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinchane, V.L.; Nale, A.B.; Panchal, S.K.; Chesneau, C.; Khandagale, A.D. On Fractional Inequalities Using Generalized Proportional Hadamard Fractional Integral Operator. Axioms 2022, 11, 266. https://doi.org/10.3390/axioms11060266
Chinchane VL, Nale AB, Panchal SK, Chesneau C, Khandagale AD. On Fractional Inequalities Using Generalized Proportional Hadamard Fractional Integral Operator. Axioms. 2022; 11(6):266. https://doi.org/10.3390/axioms11060266
Chicago/Turabian StyleChinchane, Vaijanath L., Asha B. Nale, Satish K. Panchal, Christophe Chesneau, and Amol D. Khandagale. 2022. "On Fractional Inequalities Using Generalized Proportional Hadamard Fractional Integral Operator" Axioms 11, no. 6: 266. https://doi.org/10.3390/axioms11060266
APA StyleChinchane, V. L., Nale, A. B., Panchal, S. K., Chesneau, C., & Khandagale, A. D. (2022). On Fractional Inequalities Using Generalized Proportional Hadamard Fractional Integral Operator. Axioms, 11(6), 266. https://doi.org/10.3390/axioms11060266