Fuzzy Caratheodory’s Theorem and Outer ∗-Fuzzy Measure
Abstract
:1. Introduction
2. ∗-Fuzzy Measure
- (i)
- , for all ,
- (ii)
- , for all ,
- (iii)
- , for all ,
- (iv)
- If and then , for all ,
- (1)
- μ maps to 1, ;
- (2)
- is left-continuous, increasing and tends to 1 when t tends to for every ;
- (3)
- if , in which for and , then
3. Outer ∗-Fuzzy Measure
- (i)
- ,
- (ii)
- If then ,
- (iii)
- ,
- (i)
- ;
- (ii)
- If then ;
- (iii)
- If then is a finite disjoint union of members of ξ.
- (i)
- It is clear .
- (ii)
- If then .
- (iii)
- To show property (iii) of Definition 6, we apply induction.
- (i)
- , and
- (ii)
- if is a sequence of disjoint sets in such that , then .
- (i)
- ,
- (ii)
- elements of are -∗-fuzzy measurable.
- (i)
- Suppose . Let with and . Then the ’s are disjoint members of whose , thus
- (ii)
- If , , and , there is a sequence with and . Since is ∗-additive on , we haveSince is arbitrary, we come toThus is -∗-fuzzy measurable.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghaffari, A.; Saadati, R.; Mesiar, R. Fuzzy number-valued triangular norm-based decomposable time-stamped fuzzy measure and integration. Fuzzy Sets Syst. 2022, 430, 144–173. [Google Scholar] [CrossRef]
- Ghaffari, A.; Saadati, R. ∗-fuzzy measure model for COVID-19 disease. Adv. Difference Equ. 2021, 202, 18. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, A.; Saadati, R.; Mesiar, R. Inequalities in Triangular Norm-Based *-fuzzy (L+)p Spaces. Mathematics 2020, 8, 1984. [Google Scholar] [CrossRef]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Gregori, V.; Mioana, J.-J.; Miravet, D. Contractive sequences in fuzzy metric spaces. Fuzzy Sets Syst. 2020, 379, 125–133. [Google Scholar] [CrossRef]
- Tian, J.-F.; Ha, M.-H.; Tian, D.-Z. Tripled fuzzy metric spaces and fixed point theorem. Inform. Sci. 2020, 518, 113–126. [Google Scholar] [CrossRef]
- Hadzic, O.; Pap, E. Mathematics and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; Volume 536. [Google Scholar]
- Schweizer, B.; Sklar, A. Probabilistic metric spaces. In North-Holland Series in Probability and Applied Mathematics; North-Holland Publishing Co.: New York, NY, USA, 1983. [Google Scholar]
- Karacal, F.; Arpaci, S.; Karacair, K. Triangular norm decompositions through methods using congruence relations. Int. J. Gen. Syst. 2022, 51, 239–261. [Google Scholar] [CrossRef]
- Zhao, H.; Lu, Y.; Sridarat, P.; Suantai, S.; Cho, Y.J. Common fixed point theorems in non-archimedean fuzzy metric-like spaces with applications. J. Nonlinear Sci. Appl. 2017, 10, 3708–3718. [Google Scholar] [CrossRef] [Green Version]
- Weber, S. ⊥-decomposable measures and integrals for Archimedean t-conorms ⊥. J. Math. Anal. Appl. 1984, 101, 114–138. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–28. [Google Scholar] [CrossRef]
- Dubois, D.; Rico, A. Axiomatisation of discrete fuzzy integrals with respect to possibility and necessity measures. In Modeling Decisions for Artificial Intelligence; Lecture Notes in Computer Science, 9880, Lecture Notes in Artificial Intelligence; Springer: Cham, Switzerland, 2016; pp. 94–106. [Google Scholar]
- Lowen, R. On (R(L),⨁). Fuzzy Sets Syst. 1983, 10, 203–209. [Google Scholar] [CrossRef]
- Rodabaugh, S.E. Fuzzy addition in the L-fuzzy real line. Fuzzy Sets Syst. 1982, 8, 39–52. [Google Scholar] [CrossRef]
- Sugeno, M. Theory of Fuzzy Integrals and Its Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, 1974. [Google Scholar]
- Sugeno, M.; Murofushi, T. Pseudo-additive measures and integrals. J. Math. Anal. Appl. 1987, 122, 197–222. [Google Scholar] [CrossRef] [Green Version]
- Mihet, D. Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 2008, 159, 739–744. [Google Scholar] [CrossRef]
- Aiyub, M.; Saini, K.; Raj, K. Korovkin type approximation theorem via lacunary equi-statistical convergence in fuzzy spaces. J. Math. Comput. Sci. 2022, 25, 312–321. [Google Scholar] [CrossRef]
- Nădăban, S.; Bînzar, T.; Pater, F. Some fixed point theorems for φ-contractive mappings in fuzzy normed linear spaces. J. Nonlinear Sci. Appl. 2017, 10, 5668–5676. [Google Scholar] [CrossRef] [Green Version]
- Raza, Z.; Saleem, N.; Abbas, M. Optimal coincidence points of proximal quasi-contraction mappings in non-Archimedean fuzzy metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 3787–3801. [Google Scholar] [CrossRef] [Green Version]
- Radu, V. Equicontinuous Iterates of t-Norms and Applications to Random Normed and Fuzzy Menger Spaces; Iteration Theory (ECIT ’02); Karl-Franzens-University Graz: Graz, Austria, 2004; pp. 323–350. [Google Scholar]
- Jakhar, J.; Chugh, R.; Jakhar, J. Solution and intuitionistic fuzzy stability of 3-dimensional cubic functional equation: Using two different methods. J. Math. Comput. Sci. 2022, 25, 103–114. [Google Scholar] [CrossRef]
- Saadati, R. A note on some results on the IF-normed spaces. Chaos Solitons Fractals 2009, 41, 206–213. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Beg, I.; Khafagy, S.A.; Nafadi, H.A. Fixed points for a sequence of L-fuzzy mappings in non-Archimedean ordered modified intuitionistic fuzzy metric spaces. J. Nonlinear Sci. Appl. 2021, 14, 97–108. [Google Scholar] [CrossRef]
- Bag, T.; Samanta, S.K. Finite dimensional intuitionistic fuzzy normed linear spaces. Ann. Fuzzy Math. Inform. 2014, 8, 245–257. [Google Scholar]
- Bass, R. Real Analysis for Graduate Students: Measure and Integration Theory; University of Connecticut: Storrs, CT, USA, 2014; preprint. [Google Scholar]
- Cheng, S.C.; Mordeson, J.N. Fuzzy linear operators and fuzzy normed linear spaces. Bull. Calcutta Math. Soc. 1994, 86, 429–436. [Google Scholar]
- Choquet, G. Theory of capacities. Ann. L’Institut Fourier 1954, 5, 131–295. [Google Scholar] [CrossRef] [Green Version]
- Bartwal, A.; Dimri, R.C.; Prasad, G. Some fixed point theorems in fuzzy bipolar metric spaces. J. Nonlinear Sci. Appl. 2020, 13, 196–204. [Google Scholar] [CrossRef]
- Cho, K. On a convexity in fuzzy normed linear spaces. Ann. Fuzzy Math. Inform. 2021, 22, 325–332. [Google Scholar]
- Ciric, L.; Abbas, M.; Damjanovic, B.; Saadati, R. Common fuzzy fixed point theorems in ordered metric spaces. Math. Comput. Model. 2011, 53, 1737–1741. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. A class of fuzzy measures based on triangular norms. A general framework for the combination of uncertain information. Internat. Gen. Syst. 1982, 8, 43–61. [Google Scholar] [CrossRef]
- Dubois, D.; Pap, E.; Prade, H. Hybrid probabilistic-possibilistic mixtures and utility functions. In Preferences and Decisions Under Incomplete Knowledge; Studies in Fuzziness and Soft Computing; Physica-Verlag Heidelberg: Heidelberg, Germany, 2000; Volume 51, pp. 51–73. [Google Scholar]
- Folland, G.B. Real analysis. In Modern Techniques and Their Applications, 2nd ed.; Pure and Applied Mathematics (New York). A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill Book Co.: New York, NY, USA, 1987. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesiar, R.; Li, C.; Ghaffari, A.; Saadati, R. Fuzzy Caratheodory’s Theorem and Outer ∗-Fuzzy Measure. Axioms 2022, 11, 240. https://doi.org/10.3390/axioms11050240
Mesiar R, Li C, Ghaffari A, Saadati R. Fuzzy Caratheodory’s Theorem and Outer ∗-Fuzzy Measure. Axioms. 2022; 11(5):240. https://doi.org/10.3390/axioms11050240
Chicago/Turabian StyleMesiar, Radko, Chenkuan Li, Abbas Ghaffari, and Reza Saadati. 2022. "Fuzzy Caratheodory’s Theorem and Outer ∗-Fuzzy Measure" Axioms 11, no. 5: 240. https://doi.org/10.3390/axioms11050240
APA StyleMesiar, R., Li, C., Ghaffari, A., & Saadati, R. (2022). Fuzzy Caratheodory’s Theorem and Outer ∗-Fuzzy Measure. Axioms, 11(5), 240. https://doi.org/10.3390/axioms11050240