Certain Subclasses of Bi-Starlike Function of Complex Order Defined by Erdély–Kober-Type Integral Operator
Abstract
:1. Introduction and Preliminaries
Erdély–Kober Fractional-Order Derivative
- 1.
- For we obtain the operator studied by Jung et al. [18];
- 2.
- For we obtain the operator studied by Carlson and Shafer [19];
- 3.
- For we obtain the operator studied by Choi et al. [20];
- 4.
- For we obtain the operator studied by Ruscheweyh [21];
- 5.
- 6.
- For we obtain the integral operator which studied by Bernardi [24];
- 7.
2. Coefficient Estimates for and
3. Fekete-Szegő Inequality
4. Conclusions
- For the class of strongly starlike functions, function is given by which gives and (see [36]);
- On the other hand, if we take then (see [36]);
- For , we obtain class (see [37]);
- For , which was considered and studied in [38];
- For , the class is denoted by ( see [41]);
- For , the class is denoted by (see [46]);
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Studia Univ. Babeş-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981. [Google Scholar]
- Brannan, D.A.; Clunie, J. Aspects of Contemporary Complex Analysis; Academic Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1. Arch. Rational. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Tang, H.; Deng, G.T.; Li, S.H. Coefficient estimates for new subclasses of Ma-Minda bi-univalent functions. J. Inequal. Appl. 2013, 2013, 317. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Çaglar, M.; Orhan, H.; Yagmur, N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013, 27, 1165–1171. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.-H.; Gui, Y.-C.; Srivastava, H.M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 2012, 25, 990–994. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.-H.; Xiao, H.-G.; Srivastava, H.M. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl. Math. Comput. 2012, 218, 11461–11465. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Pitman Research Notes in Mathematics Series, 301; John Willey & Sons, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Akdemir, A.O.; Karaoblan, A.; Ragusa, M.A.; Set, E. Fractional integral inequalities via Atangana-Baleanu operators for convex and concave functions. J. Funct. 2021, 2021, 1055434. [Google Scholar] [CrossRef]
- Luchko, Y. The four-parameters Wright function of the second kind and its applications in FC. Mathematics 2020, 8, 970. [Google Scholar] [CrossRef]
- Tang, J.H.; Yin, C.T. Analysis of the generalized fractional diferential system. Aims Math. 2022, 7, 8654–8684. [Google Scholar] [CrossRef]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Carlson, B.C.; Shafer, D.B. Starlike and prestarlike Hypergeometric functions. J. Math. Anal. 1984, 15, 737–745. [Google Scholar] [CrossRef]
- Choi, J.H.; Saigo, M.; Srivastava, H.M. Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 2002, 276, 432–445. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Noor, K.I. On new classes of integral operators. J. Nat. Geom. 1999, 16, 71–80. [Google Scholar]
- Noor, K.I.; Noor, M.A. On integral operators. J. Math. Anal. Appl. 1999, 238, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Livingston, A.E. On the radius of univalence of certain analytic functions. Proc. Am. Math. Soc. 1966, 17, 352–357. [Google Scholar] [CrossRef]
- Silverman, H.; Silvia, E.M. Characterizations for subclasses of univalent functions. Math. Jpn. 1999, 50, 103–109. [Google Scholar]
- Silverman, H. A class of bounded starlike functions. Int. J. Math. Math. Sci. 1994, 17, 249–252. [Google Scholar] [CrossRef]
- El-Deeb, S.M. Maclaurin Coefficient estimates for new subclasses of bi-univalent functions connected with a q-analogue of Bessel function. Abstr. Appl. Anal. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Bulboacă, T.; El-Matary, B.M. Maclaurin coefficient estimates of bi-univalent functions connected with the q-derivative. Mathematics 2020, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- El-Deeb, S.M.; El-Matary, B.M. Subclasses of bi-univalent functions associated with q-confluent hypergeometric distribution based upon the Horadam polynomials. Adv. Theory Nonlinear Anal. Appl. 2021, 5, 82–93. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Janani, T. Bi-starlike function of complex order associated with double Zeta functions. Afr. Mat. 2015, 26, 1025–1036. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck & Ruprecht, Göttingen: Göttingen, Germany, 1975. [Google Scholar]
- Fekete, M.; Szego, G. Eine Bemerkungüber ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [Google Scholar] [CrossRef]
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Ronning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Sokół, J. Radius problem in the class . Appl. Math. Comput. 2009, 214, 569–573. [Google Scholar] [CrossRef]
- Mohsin, M.; Malik, S.N. Upper bound of third hankel determinant for class of analytic functions related with lemniscate of bernoulli. J. Inequal. Appl. 2013, 2013, 412. [Google Scholar] [CrossRef] [Green Version]
- Raina, R.K.; Sokół, J. On coefficient estimates for a class of starlike functions. Hacet. J. Math. Statist. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Shi, L.; Izaz, A.; Arif, M.; Cho, N.E.; Hussain, S.; Hassan, K.A. Study of third hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain. Mathematics 2019, 7, 418. [Google Scholar] [CrossRef] [Green Version]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 598. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikeness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Huo, T.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function theory of Complex Analysis. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Srivastava, H.M.; Raducanu, D.; Zaprawa, P.A. Certain subclass of analytic functions defined by means of differential subordination. Filomat 2016, 30, 3743–3757. [Google Scholar] [CrossRef]
- Srivastava, H.M. Certain q-polynomial expansions for functions of several variables. I and II. IMA J. Appl. Math. 1983, 30, 205–209. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alburaikan, A.; Murugusundaramoorthy, G.; El-Deeb, S.M. Certain Subclasses of Bi-Starlike Function of Complex Order Defined by Erdély–Kober-Type Integral Operator. Axioms 2022, 11, 237. https://doi.org/10.3390/axioms11050237
Alburaikan A, Murugusundaramoorthy G, El-Deeb SM. Certain Subclasses of Bi-Starlike Function of Complex Order Defined by Erdély–Kober-Type Integral Operator. Axioms. 2022; 11(5):237. https://doi.org/10.3390/axioms11050237
Chicago/Turabian StyleAlburaikan, Alhanouf, Gangadharan Murugusundaramoorthy, and Sheza M. El-Deeb. 2022. "Certain Subclasses of Bi-Starlike Function of Complex Order Defined by Erdély–Kober-Type Integral Operator" Axioms 11, no. 5: 237. https://doi.org/10.3390/axioms11050237
APA StyleAlburaikan, A., Murugusundaramoorthy, G., & El-Deeb, S. M. (2022). Certain Subclasses of Bi-Starlike Function of Complex Order Defined by Erdély–Kober-Type Integral Operator. Axioms, 11(5), 237. https://doi.org/10.3390/axioms11050237