Quadratic Equation in Split Quaternions
Abstract
:1. Introduction
1.1. Split Quaternions
1.2. Quadratic Equations in
1.3. Quadratic Equation in
- Equation I:
- Equation II:
- Equation II for SI,
- Equation II for SZ.
2. Equation with
- (1)
- If , that is, , then
- (2)
- If , then if and only if and .
- (i)
- If , then
- (ii)
- If , then
- (1)
- If and , then
- (2)
- If and , then the set of solutions is
- (3)
- If , , and , then the solutions are as follows:
- (i)
- If , then
- (ii)
- If , then
3. Being Invertible
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- ;
- (v)
- .
- (vi)
- ;
- (vii)
- .
- (1)
- provided ;
- (2)
- ; and provided ;
- (3)
- provided ;
- (4)
- provided , Case 1 of Lemma 2 holds, and z is the unique positive root of real polynomial ;
- (5)
- provided , Case 2 of Lemma 2 hold and are two positive roots of real polynomial ;
- (6)
- provided , Case 3 of Lemma 2 hold and are the three positive roots of real polynomial .
- (1)
- provided ;
- (2)
- , and provided ;
- (3)
- provided ;
- (4)
- provided , Case 1 of Lemma 2 holds and z is the unique positive root of real polynomial ;
- (5)
- provided , Case 2 of Lemma 2 holds and are two positive roots of real polynomial ;
- (6)
- provided , Case 3 of Lemma 2 holds and are the three positive roots of real polynomial .
4. Being Noninvertible
- (1)
- There exists an r of (56) satisfying
- (2)
- If , then .
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, W.; Chang, Z. Moore–Penrose inverse of split quaternion. Linear Multilinear Algebra 2020, 1–17. [Google Scholar] [CrossRef]
- Antonuccio, F. Split-quaternions and the Dirac equation. Adv. Appl. Clifford Algebras 2015, 25, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Tang, Z. Some similarities classes related to O(2,1) in split quaternion. Linear Multilinear Algebra 2021, 1–22. [Google Scholar] [CrossRef]
- Frenkel, I.; Libine, M. Split quaternionic analysis and separation of the series for SL(2,R) and SL(2,C)/SL(2,R). Adv. Math. 2011, 228, 678–763. [Google Scholar] [CrossRef] [Green Version]
- Kula, L.; Yayli, Y. Split quaternions and rotations in semi Euclidean space. J. Korean Math. Soc. 2007, 44, 1313–1327. [Google Scholar] [CrossRef] [Green Version]
- Libine, M. An Invitation to Split Quaternionic Analysis, Hypercomplex Analysis and Applications, Trends in Mathematics; Sabadini, I., Sommen, F., Eds.; Springer: Basel, Switzerland, 2011; pp. 161–179. [Google Scholar]
- Ozdemir, M.; Erdogdu, M.; Simsek, H. On the eigenvalues and eigenvectors of a lorentzian rotation matrix by using split quaternions. Adv. Appl. Clifford Algebras 2014, 24, 179–192. [Google Scholar] [CrossRef]
- Huang, L.; Thus, W. Quadratic formulas for quaternions. Appl. Math. Lett. 2002, 15, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Porter, R. Quaternionic linear and quadratic equations. J. Nat. Geom. 1997, 11, 101–106. [Google Scholar]
- Parker, J.R.; Short, I. Conjugacy classification of quaternionic Möbius transformations. Comput. Methods Funct. Theory 2009, 9, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Parker, J.R.; Wang, X. On the classification of quaternionic Möbius transformations. Math. Proc. Camb. Phil. Soc. 2004, 137, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Scharler, D.F.; Schröcker, H.P. Factorization results for left polynomials in some associative real algebras: State of the art, applications, and open questions. J. Comput. Appl. Math. 2019, 349, 508–522. [Google Scholar] [CrossRef] [Green Version]
- Scharler, D.F.; Siegele, J.; Schröcker, H.P. Quadratic Split quaternion polynomials: Factorization and geometry. Adv. Appl. Clifford Algebras 2020, 30, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdemir, M. The roots of a split quaternion. Appl. Math. Lett. 2009, 22, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Kwun, Y.C.; Munir, M.; Nazeer, W.; Kang, S. Some fixed points results of quadratic functions in split quaternions. J. Funct. Spaces 2016, 2106, 3460257. [Google Scholar] [CrossRef] [Green Version]
- Munir, M.; Nizami, A.; Rasoo1, A.; Saleem, M.S.; Kang, S.M. Fixed points results in algebras of split quaternion and octonion. Symmetry 2018, 10, 405. [Google Scholar] [CrossRef] [Green Version]
The Solution(s) of | ||
---|---|---|
(1) | , | with |
(1) | ||
with | ||
(2) | ||
with | ||
(3) (i) | ||
(3) (ii) | and |
The Solution(s) of | |||
---|---|---|---|
(1) | |||
(2)I | no solution | ||
(2)II | |||
(3) | |||
Solution(s) of | |||
---|---|---|---|
(4) & C1(i)L3.1 | |||
(4) & C1(ii)L3.1 | |||
(4) & C1(iii)L3.1 | |||
(4) & C1(iv)L3.1 | |||
(4) & C1(v)L3.1 | |||
(5) & C2(vi)L3.1 | |||
(5) & C2(vii)L3.1 | |||
(6) & C3L3.1 | |||
r | The Solution(s) of | ||
---|---|---|---|
(1) | 0 | ||
(2)I | 0 | ||
(2)II | −2 | ||
2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W. Quadratic Equation in Split Quaternions. Axioms 2022, 11, 188. https://doi.org/10.3390/axioms11050188
Cao W. Quadratic Equation in Split Quaternions. Axioms. 2022; 11(5):188. https://doi.org/10.3390/axioms11050188
Chicago/Turabian StyleCao, Wensheng. 2022. "Quadratic Equation in Split Quaternions" Axioms 11, no. 5: 188. https://doi.org/10.3390/axioms11050188
APA StyleCao, W. (2022). Quadratic Equation in Split Quaternions. Axioms, 11(5), 188. https://doi.org/10.3390/axioms11050188