Various Series Related to the Polylogarithmic Function
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Conclusions and Outlook
- 1.
- In this paper we found more series of the form found in [6,12]. We also gave a new proof of the squared identity found in the new book [12] while also giving new series as well as giving the summation of the expression raised to the third power. Moreover, novel results obtained have been rewritten in terms of a hyperlogarithmic function when possible.
- 2.
- To assure accuracy of the results, we verified all the series identities through Wolfram Alpha [18].
- 3.
- Further questions can be asked regarding the series of the form for , for which functions can the integral representations be found.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Euler, L. De Inventione Integralium, si Post Integrationem Variabili Quantitati Determinatus Valor Tribuatur; Miscellanea Berolinensia; University of the Pacific: Stockton, CA, USA, 1743; Volume 7, pp. 129–171. [Google Scholar]
- Malmsten, S.J. Om Definita Integraler Mellan Imaginära Gränsor; Norstedt and Söner: Stockholm, Sweden, 1865. [Google Scholar]
- Davis, H.T. The Summation of Series (Dover Books on Mathematics); Dover Publications: Mineola, NY, USA, 2015; ISBN 978-0486789682. [Google Scholar]
- Hirschman, I.I. Infinite Series; Reprint Edition; Dover Publications: Mineola, NY, USA, 2014. [Google Scholar]
- Knopp, K. Theory and Applications of Infinite Series; Dover Publications: Mineola, NY, USA, 1990; ISBN 978-0-486-66165-2. [Google Scholar]
- Stojiljković, V.; Fabiano, N.; Šešum Čavić, V. Harmonic series with polylogarithmic functions. Vojnoteh. Glas. Tech. Cour. 2022, 70, 3–61. [Google Scholar] [CrossRef]
- Lewin, L. Polylogarithms and Associated Functions; Elsevier North Holland: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Lappo-Danilevski, J.A. Théorie algorithmique des corps de Riemann. Rec. Math. Moscou 1927, 34, 113–148. [Google Scholar]
- Vollinga, J.; Weinzierl, S. Numerical evaluation of multiple polylogarithms. Comput. Phys. Commun. 2005, 167, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Weinzierl, S. Algebraic Algorithms in Perturbative Calculations. In Frontiers in Number Theory, Physics, and Geometry II; Springer: Berlin/Heidelberg, Germany, 2007; pp. 737–757. [Google Scholar]
- Furdui, O. Harmonic series with polygamma functions. J. Class. Anal. 2016, 8, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Sîntămărian, A.; Furdui, O. Sharpening Mathematical Analysis Skills; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-030-77138-6. [Google Scholar] [CrossRef]
- Fabiano, N. Zeta function and some of its properties. Vojnoteh. Glas. Tech. Cour. 2020, 68, 895–906. [Google Scholar] [CrossRef]
- Edwards, M.H. Riemann’s Zeta Function; Dover Publications: Mineola, NY, USA, 2001. [Google Scholar]
- Ali Olaikan, S. An Introduction to the Harmonic Series and Logarithmic Integrals; Ali Shadhar Olaikhan, Amazon Digital Services LLC KDP Print US: Seattle, WA, USA, 2021. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Cambridge University Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Bonar, D.D.; Kourym, M.J. Real Infinite Series; MAA: Washington, DC, USA, 2006. [Google Scholar]
- Wolfram Alpha LLC. Wolfram|Alpha. Available online: https://www.wolframalpha.com/ (accessed on 12 January 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojiljković, V.; Fabiano, N.; Pantović, M.; Radojević, S.; Radenović, S.; Šešum Ćavić, V. Various Series Related to the Polylogarithmic Function. Axioms 2022, 11, 174. https://doi.org/10.3390/axioms11040174
Stojiljković V, Fabiano N, Pantović M, Radojević S, Radenović S, Šešum Ćavić V. Various Series Related to the Polylogarithmic Function. Axioms. 2022; 11(4):174. https://doi.org/10.3390/axioms11040174
Chicago/Turabian StyleStojiljković, Vuk, Nicola Fabiano, Mirjana Pantović, Slobodan Radojević, Stojan Radenović, and Vesna Šešum Ćavić. 2022. "Various Series Related to the Polylogarithmic Function" Axioms 11, no. 4: 174. https://doi.org/10.3390/axioms11040174
APA StyleStojiljković, V., Fabiano, N., Pantović, M., Radojević, S., Radenović, S., & Šešum Ćavić, V. (2022). Various Series Related to the Polylogarithmic Function. Axioms, 11(4), 174. https://doi.org/10.3390/axioms11040174