An Effective Approximation Algorithm for SecondOrder Singular Functional Differential Equations
Abstract
:1. Introduction
2. The Bessel Matrix Technique
Algorithm 1: The computation of sderivative of the vector ${\mathbf{\Xi}}_{N}\left(x\right)$. 

Initial Conditions in the Matrix Form
3. Computational Simulations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
 Dehghan, M.; Shakeri, F. The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Phys. Scr. 2008, 78, 065004. [Google Scholar] [CrossRef]
 Nelson, P.W.; Perelson, A.S. Mathematical analysis of delay differential equation models of HIV1 infection. Math. Biosci. 2002, 179, 73–94. [Google Scholar] [CrossRef]
 Liu, X.; Ballinger, G. Boundedness for impulsive delay differential equations and applications to population growth models. Nonlinear Anal. 2003, 53, 1041–1062. [Google Scholar] [CrossRef]
 Villasana, M.; Radunskaya, A. A delay differential equation model for tumor growth. J. Math. Biol. 2003, 47, 270–294. [Google Scholar] [CrossRef] [PubMed]
 Roussel, M.R. The use of delay differential equations in chemical kinetics. J. Phys. Chem. 1996, 100, 8323–8330. [Google Scholar] [CrossRef]
 Bratsun, D.; Volfson, D.; Tsimring, L.S.; Hasty, J. Delayinduced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. USA 2005, 102, 14593–14598. [Google Scholar] [CrossRef] [Green Version]
 Huang, G.; Takeuchi, Y.; Ma, W. Lyapunov functional for delay differential equations model of viral infections. SIAM J. Appl. Math. 2010, 70, 2693–2708. [Google Scholar] [CrossRef]
 Chambre, P.L. On the solution of the PoissonBoltzmann equation with application to the theory of thermal explosions. J. Chem. Phys. 1952, 20, 1795–1797. [Google Scholar] [CrossRef]
 Boubaker, K.; Van Gorder, R.A. Application of the BPES to Lane–Emden equations governing polytropic and isothermal gas spheres. New Astron. 2012, 17, 565–569. [Google Scholar] [CrossRef]
 Wazwaz, A.M. A new method for solving singular initial value problems in the secondorder ordinary differential equations. Appl. Math. Comput. 2002, 128, 45–57. [Google Scholar] [CrossRef]
 Mirzaee, F.; Hoseini, S.F. Solving singularly perturbed differentialdifference equations arising in science and engineering with Fibonacci polynomials. Results Phys. 2013, 3, 134–141. [Google Scholar] [CrossRef] [Green Version]
 Kadalbajoo, M.K.; Sharma, K.K. Numerical analysis of boundaryvalue problems for singularly perturbed differentialdifference equations with small shifts of mixed type. J. Optim. Theory Appl. 2002, 115, 145–163. [Google Scholar] [CrossRef]
 Xu, H.; Jin, Y. The asymptotic solutions for a class of nonlinear singular perturbed differential systems with time delays. Sci. World J. 2014, 2014, 965376. [Google Scholar] [CrossRef] [Green Version]
 Sabir, Z.; Raja, M.A.; Umar, M.; Shoaib, M. Neuroswarm intelligent computing to solve the secondorder singular functional differential model. Eur. Phys. J. Plus 2020, 135, 474. [Google Scholar] [CrossRef]
 Adel, W.; Sabir, Z. Solving a new design of nonlinear secondorder Lane–Emden pantograph delay differential model via Bernoulli collocation method. Eur. Phys. J. Plus 2020, 135, 427. [Google Scholar] [CrossRef]
 Izadi, M.; Srivastava, H.M. An efficient approximation technique applied to a nonlinear Lane–Emden pantograph delay differential model. Appl. Math. Comput. 2021, 401, 126123. [Google Scholar] [CrossRef]
 Sabir, Z.; Abdul Wahab, H.; Umar, M.; Erdŏgan, F. Stochastic numerical approach for solving second order nonlinear singular functional differential equation. Appl. Math. Comput. 2019, 363, 124605. [Google Scholar] [CrossRef]
 Singh, H.; Srivastava, H.M.; Kumar, D. A reliable algorithm for the approximate solution of the nonlinear Lane–Emden type equations arising in astrophysics. Numer. Methods Partial Differ. Equ. 2018, 34, 1524–1555. [Google Scholar] [CrossRef]
 Izadi, M. A discontinuous finite element approximation to singular Lane–Emden type equations. Appl. Math. Comput. 2021, 401, 126115. [Google Scholar] [CrossRef]
 Krall, H.L.; Frink, O. A new class of orthogonal polynomials: The Bessel polynomials. Trans. Am. Math. Soc. 1949, 65, 100–115. [Google Scholar] [CrossRef]
 Grosswald, E. Bessel Polynomials, Lecture Notes in Math; Springer: Berlin, Germany, 1978; Volume 698. [Google Scholar]
 Srivastava, H.M. A note on the Bessel polynomials. Riv. Mat. Univ. Parma (Ser. 4) 1983, 9, 207–212. [Google Scholar]
 Srivastava, H.M. Orthogonality relations and generating functions for the generalized Bessel polynomials. Appl. Math. Comput. 1994, 61, 99–134. [Google Scholar] [CrossRef]
 Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
 Yang, S.; Srivastava, H.M. Some families of generating functions for the Bessel polynomials. J. Math. Anal. Appl. 1997, 211, 314–325. [Google Scholar] [CrossRef] [Green Version]
 Lin, S.D.; Chen, I.C.; Srivastava, H.M. Certain classes of finiteseries relationships and generating functions involving the generalized Bessel polynomials. Appl. Math. Comput. 2003, 137, 261–275. [Google Scholar] [CrossRef]
 Izadi, M.; Cattani, C. Generalized Bessel polynomial for multiorder fractional differential equations. Symmetry 2020, 12, 1260. [Google Scholar] [CrossRef]
 Izadi, M.; Yüzbaşı, Ş.; Cattani, C. Approximating solutions to fractionalorder BagleyTorvik equation via generalized Bessel polynomial on large domains. Ric. Mat. 2021, 1–27. [Google Scholar] [CrossRef]
 Izadi, M.; Yüzbaşı, Ş.; Adel, W. Two novel Bessel matrix techniques to solve the squeezing flow problem between infinite parallel plates. Comput. Math. Math. Phys. 2021, 61, 2034–2053. [Google Scholar] [CrossRef]
 Izadi, M.; Srivastava, H.M. Numerical approximations to the nonlinear fractionalorder Logistic population model with fractionalorder Bessel and Legendre bases. Chaos Solitons Fractals 2021, 145, 110779. [Google Scholar] [CrossRef]
 Torabi, M.; Hosseini, M.M. A new efficient method for the numerical solution of linear timedependent partial differential equations. Axioms 2018, 7, 70. [Google Scholar] [CrossRef] [Green Version]
 Izadi, M. Fractional polynomial approximations to the solution of fractional Riccati equation. Punjab Univ. J. Math. 2019, 51, 123–141. [Google Scholar]
 Srivastava, H.M.; AbdelGawad, H.I.; Saad, K.M. Stability of traveling waves based upon the Evans function and Legendre polynomials. Appl. Sci. 2020, 10, 846. [Google Scholar] [CrossRef] [Green Version]
 Roul, P.; Prasad Goura, V.M. A Bessel collocation method for solving Bratu’s problem. J. Math. Chem. 2020, 58, 1601–1614. [Google Scholar] [CrossRef]
 Izadi, M.; Srivastava, H.M. A novel matrix technique for multiorder pantograph differential equations of fractional order. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2021, 477, 2021031. [Google Scholar] [CrossRef]
 Khader, M.M.; Saad, K. A numerical approach for solving the fractional Fisher equation using Chebyshev spectral collocation method. Chaos Solitons Fractals 2018, 110, 169–177. [Google Scholar] [CrossRef]
 Izadi, M.; Srivastava, H.M. A discretization approach for the nonlinear fractional logistic equation. Entropy 2020, 22, 1328. [Google Scholar] [CrossRef]
 Abdalla, M.; Hidan, M. Analytical properties of the twovariables Jacobi matrix polynomials with applications. Demonstr. Math. 2020, 54, 178–188. [Google Scholar] [CrossRef]
 Zaeri, S.; Saeedi, H.; Izadi, M. Fractional integration operator for numerical solution of the integropartial time fractional diffusion heat equation with weakly singular kernel. AsianEur. J. Math. 2017, 10, 1750071. [Google Scholar] [CrossRef]
 Deniz, S.; Sezer, M. Rational Chebyshev collocation method for solving nonlinear heat transfer equations. Int. Commun. Heat Mass Transf. 2020, 114, 104595. [Google Scholar] [CrossRef]
Bessel ($\mathit{N}=3$)  ANNs ($\mathit{\ell}=1$) [17]  

x  $\mathit{\ell}=1$  $\mathit{\ell}=5$  $\mathit{\ell}=20$  Min  Mean  S.D 
$0.1\ell $  ${9.2006}_{19}$  ${5.4584}_{16}$  ${1.1589}_{14}$  ${6.20}_{09}$  ${1.42}_{05}$  ${2.03}_{05}$ 
$0.2\ell $  ${3.3134}_{18}$  ${1.9357}_{15}$  ${3.3996}_{14}$  ${1.60}_{07}$  ${7.36}_{05}$  ${4.17}_{04}$ 
$0.3\ell $  ${6.6298}_{18}$  ${3.7979}_{15}$  ${4.8678}_{14}$  ${5.21}_{07}$  ${1.44}_{04}$  ${8.90}_{04}$ 
$0.4\ell $  ${1.0319}_{17}$  ${5.7610}_{15}$  ${3.7092}_{14}$  ${2.86}_{07}$  ${2.16}_{04}$  ${1.37}_{03}$ 
$0.5\ell $  ${1.3831}_{17}$  ${7.4534}_{15}$  ${1.9303}_{14}$  ${1.34}_{07}$  ${2.80}_{04}$  ${1.80}_{03}$ 
$0.6\ell $  ${1.6615}_{17}$  ${8.5035}_{15}$  ${1.3905}_{13}$  ${1.72}_{07}$  ${3.24}_{04}$  ${2.11}_{03}$ 
$0.7\ell $  ${1.8121}_{17}$  ${8.5398}_{15}$  ${3.4069}_{13}$  ${1.96}_{07}$  ${3.48}_{04}$  ${2.30}_{03}$ 
$0.8\ell $  ${1.7799}_{17}$  ${7.1907}_{15}$  ${6.4277}_{13}$  ${6.20}_{07}$  ${3.58}_{04}$  ${2.40}_{03}$ 
$0.9\ell $  ${1.5099}_{17}$  ${4.0846}_{15}$  ${1.0638}_{12}$  ${9.39}_{07}$  ${3.67}_{04}$  ${2.47}_{03}$ 
$1.0\ell $  ${9.4700}_{18}$  ${1.1500}_{15}$  ${1.6224}_{12}$  ${5.82}_{07}$  ${3.79}_{04}$  ${2.56}_{03}$ 
Bessel  ANNs ($\mathit{\ell}=1$) [17]  

x  $\mathit{\ell}=1,\mathit{N}=10$  $\mathit{\ell}=2,\mathit{N}=20$  $\mathit{\ell}=5,\mathit{N}=30$  Min  Mean  S.D 
$0.1\ell $  ${1.4633}_{6}$  ${1.9321}_{9}$  ${1.7737}_{7}$  ${3.30}_{8}$  ${4.51}_{5}$  ${8.65}_{5}$ 
$0.2\ell $  ${4.7314}_{6}$  ${9.8570}_{9}$  ${2.8830}_{7}$  ${1.09}_{6}$  ${1.81}_{4}$  ${3.67}_{4}$ 
$0.3\ell $  ${8.2497}_{6}$  ${2.3617}_{8}$  ${9.0792}_{8}$  ${3.79}_{7}$  ${4.22}_{4}$  ${8.68}_{4}$ 
$0.4\ell $  ${1.0729}_{5}$  ${4.0088}_{8}$  ${1.1621}_{7}$  ${2.04}_{6}$  ${7.52}_{4}$  ${1.59}_{3}$ 
$0.5\ell $  ${1.1221}_{5}$  ${5.5145}_{8}$  ${3.1451}_{8}$  ${1.05}_{5}$  ${1.16}_{3}$  ${2.50}_{3}$ 
$0.6\ell $  ${9.1480}_{6}$  ${6.5255}_{8}$  ${3.1422}_{7}$  ${1.51}_{5}$  ${1.58}_{3}$  ${3.50}_{3}$ 
$0.7\ell $  ${4.2955}_{6}$  ${6.8403}_{8}$  ${6.4486}_{7}$  ${2.80}_{7}$  ${1.96}_{3}$  ${4.47}_{3}$ 
$0.8\ell $  ${3.2249}_{6}$  ${6.4385}_{8}$  ${6.9379}_{7}$  ${2.02}_{5}$  ${2.26}_{3}$  ${5.30}_{3}$ 
$0.9\ell $  ${1.3031}_{5}$  ${5.4593}_{8}$  ${3.7913}_{7}$  ${3.87}_{6}$  ${2.43}_{3}$  ${5.85}_{3}$ 
$1.0\ell $  ${2.4539}_{5}$  ${4.1499}_{8}$  ${1.7989}_{7}$  ${5.39}_{6}$  ${2.45}_{3}$  ${6.05}_{3}$ 
Bessel  ANNs ($\mathit{\ell}=1$) [17]  

x  $\mathit{\ell}=1,\mathit{N}=10$  $\mathit{\ell}=\mathit{\pi},\mathit{N}=20$  $\mathit{\ell}=2\mathit{\pi},\mathit{N}=30$  Min  Mean  S.D 
$0.1\ell $  ${1.3172}_{8}$  ${4.9934}_{12}$  ${5.9707}_{11}$  ${3.51}_{8}$  ${1.03}_{6}$  ${1.29}_{6}$ 
$0.2\ell $  ${3.4686}_{8}$  ${1.3423}_{11}$  ${7.7946}_{11}$  ${7.83}_{9}$  ${2.37}_{6}$  ${2.34}_{6}$ 
$0.3\ell $  ${4.1486}_{8}$  ${1.7895}_{11}$  ${8.3353}_{11}$  ${8.63}_{8}$  ${3.90}_{6}$  ${3.94}_{6}$ 
$0.4\ell $  ${1.8096}_{8}$  ${2.0670}_{11}$  ${7.7780}_{11}$  ${6.81}_{9}$  ${5.52}_{6}$  ${5.42}_{6}$ 
$0.5\ell $  ${4.1676}_{8}$  ${2.2442}_{11}$  ${6.2475}_{11}$  ${8.48}_{8}$  ${6.83}_{6}$  ${6.74}_{6}$ 
$0.6\ell $  ${1.3460}_{7}$  ${2.3120}_{11}$  ${3.7118}_{11}$  ${6.03}_{8}$  ${7.52}_{6}$  ${7.82}_{6}$ 
$0.7\ell $  ${2.4942}_{7}$  ${2.3020}_{11}$  ${1.3218}_{12}$  ${1.37}_{7}$  ${7.74}_{6}$  ${8.37}_{6}$ 
$0.8\ell $  ${3.6947}_{7}$  ${2.2240}_{11}$  ${4.5159}_{11}$  ${1.28}_{7}$  ${7.61}_{6}$  ${8.51}_{6}$ 
$0.9\ell $  ${4.7614}_{7}$  ${2.0646}_{11}$  ${1.0211}_{10}$  ${8.94}_{9}$  ${7.53}_{6}$  ${8.38}_{6}$ 
$1.0\ell $  ${5.5254}_{7}$  ${1.8200}_{11}$  ${1.6874}_{10}$  ${2.68}_{8}$  ${7.70}_{6}$  ${8.27}_{6}$ 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izadi, M.; Srivastava, H.M.; Adel, W. An Effective Approximation Algorithm for SecondOrder Singular Functional Differential Equations. Axioms 2022, 11, 133. https://doi.org/10.3390/axioms11030133
Izadi M, Srivastava HM, Adel W. An Effective Approximation Algorithm for SecondOrder Singular Functional Differential Equations. Axioms. 2022; 11(3):133. https://doi.org/10.3390/axioms11030133
Chicago/Turabian StyleIzadi, Mohammad, Hari M. Srivastava, and Waleed Adel. 2022. "An Effective Approximation Algorithm for SecondOrder Singular Functional Differential Equations" Axioms 11, no. 3: 133. https://doi.org/10.3390/axioms11030133