On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions
Abstract
:1. Introduction
2. Ostrowski–Mercer Inequalities
3. Application to Special Means
- 1.
- The arithmetic mean
- 2.
- The generalized logarithmic mean
- 3.
- The identric mean
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrowski, A.M. Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert. Comment. Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
- Budak, H.; Sarikaya, M.Z.; Dragomir, S.S. Some perturbed Ostrowski type inequalities for twice differentiable functions. In Advances in Mathematical Inequalities and Applications; Birkhäuser: Singapore, 2018; pp. 279–294. [Google Scholar]
- Cerone, P.; Dragomir, S.S.; Roumeliotis, J. An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications. East Asian Math. J. 1999, 15, 1–9. [Google Scholar]
- Dragomir, S.S. The Ostrowski integral inequality for Lipschitzian mappings and applications. Comput. Math. Appl. 1999, 38, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals. Proc. The American Math. Soc. 2017, 145, 1527–1538. [Google Scholar] [CrossRef]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Mitrinović, D.S.; Pexcxarixcx, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Melbourne, Austrila, 2000. [Google Scholar]
- Pećarixcx, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Mercer, A.M. A Variant of Jensenís Inequality. J. Ineq. Pure and Appl. Math 2003, 4, Art 73. [Google Scholar]
- Kian, M.; Moslehian, M.S. Refinements of the operator Jensen-Mercer inequality. Electron. J. Linear Algebra 2013, 26, 742–753. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Ali, M.A.; Mohammed, P.O.; Kashuri, A. On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Math. 2021, 6, 712–725. [Google Scholar] [CrossRef]
- Ali, M.M.; Khan, A.R. Generalized integral Mercer’s inequality and integral means. J. Inequal. Spec. Funct. 2019, 10, 60–76. [Google Scholar]
- Chu, H.H.; Rashid, S.; Hammouch, H.; Chu, Y. New fractional estimates for Hermite-Hadamard-Mercer’s type inequalities. Alexadria Eng. J. 2020, 59, 3079–3089. [Google Scholar] [CrossRef]
- Niezgoda, M. A generalization of Mercer’s result on convex functions. Nonlinear Anal. 2009, 71, 277. [Google Scholar] [CrossRef]
- Wang, H.; Khan, J.; Khan, M.A.; Khalid, S.; Khan, R. The Hermite–Hadamard-Jensen-Mercer Type Inequalities for Riemann-Liouville Fractional Integral. J. Math. 2021, 2021, 5516987. [Google Scholar] [CrossRef]
- Butt, S.I.; Yousaf, S.; Asghar, A.; Khan, K.A.; Moradi, H.R. New Fractional Hermite–Hadamard–Mercer Inequalities for Harmonically Convex Function. J. Funct. Spaces 2021, 2021, 5868326. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Saleem, M.S.; Sajid, S.; Zahoor, M.S.; Kashuri, A. Hermite-Jensen-Mercer-Type Inequalities via Caputo-Fabrizio Fractional Integral for h-Convex Function. Fractal Fract. 2021, 5, 269. [Google Scholar] [CrossRef]
- Set, E.; Celik, B.; Ozdemir, M.E.; Aslan, M. Some New Results on Hermite–Hadamard-Mercer-Type Inequalities Using a General Family of Fractional Integral Operators. Fractal Fract. 2021, 5, 68. [Google Scholar] [CrossRef]
- Cerone, P.; Dragomir, S.S. Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstratio Math. 2004, 37, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sial, I.B.; Patanarapeelert, N.; Ali, M.A.; Budak, H.; Sitthiwirattham, T. On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions. Axioms 2022, 11, 132. https://doi.org/10.3390/axioms11030132
Sial IB, Patanarapeelert N, Ali MA, Budak H, Sitthiwirattham T. On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions. Axioms. 2022; 11(3):132. https://doi.org/10.3390/axioms11030132
Chicago/Turabian StyleSial, Ifra Bashir, Nichaphat Patanarapeelert, Muhammad Aamir Ali, Hüseyin Budak, and Thanin Sitthiwirattham. 2022. "On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions" Axioms 11, no. 3: 132. https://doi.org/10.3390/axioms11030132
APA StyleSial, I. B., Patanarapeelert, N., Ali, M. A., Budak, H., & Sitthiwirattham, T. (2022). On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions. Axioms, 11(3), 132. https://doi.org/10.3390/axioms11030132