Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for (k,h)-Riemann–Liouville fractional integral. NTMSCI 2016, 4, 138–146. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. Analytical Inequalities for Fractional Calculus Operators and the Mittag-Leffler Function; Element: Zagreb, Croatia, 2021. [Google Scholar]
- Butt, S.I.; Akdemir, A.O.; Bhatti, M.Y.; Nadeem, M. New refinements of Chebyshev-Pólya-Szegö-type inequalities via generalized fractional integral operators. J. Inequal. Appl. 2020, 2020, 157. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E.; Akdemir, A.O.; Yüksel, E. New extensions of Chebyshev-Pólya-Szegö type inequalities via conformable integrals. AMIS Math. 2020, 5, 956–965. [Google Scholar] [CrossRef]
- Farid, G. Some new Ostrowski type inequalities via fractional integrals. Int. J. Anal. Appl. 2017, 14, 64–68. [Google Scholar]
- Farid, G.; Rehman, A.U.; Mishra, V.N.; Mehmood, S. Fractional integral inequalities of Grüss type via generalized Mittag-Leffler function. Int. J. Anal. Appl. 2019, 17, 548–558. [Google Scholar]
- Sarikaya, M.Z.; Dahmani, M.; Kiris, M.E.; Ahmad, F. (k,s)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016, 45, 77–89. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities. J. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Mehmood, S.; Pečarić, J. Pólya-Szegö and Chebyshev types inequalities via an extended generalized Mittag-Leffler function. Math. Ineq. Appl. 2019, 22, 1365–1377. [Google Scholar] [CrossRef] [Green Version]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Inequal. Pure. Appl. Math. 2009, 10, 86. [Google Scholar]
- Dahmani, Z.; Mechouar, O.; Brahami, S. Certain inequalities related to the Chebyshev’s functional involving a type Riemann–Liouville operator. Bull. Math. Anal. Appl. 2011, 3, 38–44. [Google Scholar]
- Habib, S.; Mubeen, S.; Naeem, M.N. Chebyshev type integral inequalities for generalized k-fractional conformable integrals. J. Inequal. Spec. Func. 2018, 9, 53–65. [Google Scholar]
- Nisar, K.S.; Rahman, G.; Mehrez, K. Chebyshev type inequalities via generalized fractional conformable integrals. J. Inequal. Appl. 2019, 2019, 245. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Jarad, F.; Kalsoom, H.; Chu, Y.M. On Pólya-Szegö and Chebyshev types inequalities via generalized k-fractional integrals. Adv. Difference Equ. 2020, 2020, 125. [Google Scholar] [CrossRef]
- Set, E.; Mumcu, I.; Demirbas, S. Conformable fractional integral inequalities of Chebyshev type. RACSAM 2019, 113, 2253–2259. [Google Scholar] [CrossRef]
- Ntouyas, S.K.; Agarwal, P.; Tariboon, J. On Pólya-Szegö and Chebyshev types inequalities involving the Riemann–Liouville fractional integral operators. J. Math. Inequal. 2016, 10, 491–504. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes. 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Some new Riemann–Liouville fractional integral inequalities. Int. J. Math. Math. Sci. 2014, 2014, 86. [Google Scholar] [CrossRef] [Green Version]
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov. 1882, 2, 93–98. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Rahman, G.; Baleanu, D.; Qurashi, M.A.; Purohit, S.D.; Mubeen, S.; Arshad, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Frac. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar]
- Jangid, K.; Purohit, S.D.; Nisar, K.S.; Araci, S. Chebyshev type inequality containing a fractional integral operator with a multi-index Mittag-Leffler function as a kernel. Analysis 2021, 41, 61–67. [Google Scholar] [CrossRef]
- Malamud, S.M. Some complements to the Jensen and Chebyshev inequalities and a problem of W. Walter. Proc. Am. Math. Soc. 2001, 129, 2671–2678. [Google Scholar] [CrossRef]
- Niculescu, C.P. An extension of Chebyshev’s inequality and its connection with Jensen’s inequality. J. Inequal. Appl. 2001, 6, 451–462. [Google Scholar] [CrossRef]
- Purohit, S.D.; Jolly, N.; Bansal, M.K.; Singh, J.; Kumar, D. Chebyshev type inequalities involving the fractional integral operator containing multi-index Mittag-Leffler function in the kernel. Appl. Appl. Math. 2020, 29–38. [Google Scholar]
- Qi, F.; Habib, S.; Mubeen, S.; Naeem, M.N. Generalized k-fractional conformable integrals and related inequalities. AIMS Math. 2019, 4, 343–358. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Alsharif, A.M.; Guirao, J.L.G. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Math. 2021, 6, 11167–11186. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. A further extension of Mittag-Leffler function. Fract. Calc. Appl. Anal. 2018, 21, 1377–1395. [Google Scholar] [CrossRef]
- Zhang, Z.; Farid, G.; Mehmood, S.; Nonlaopon, K.; Yan, T. Generalized k-fractional integral operators associated with Pólya-Szegö and Chebyshev types inequalities. Fractal Fract. 2022, 6, 90. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Farid, G.; Mehmood, S.; Jung, C.-Y.; Yan, T. Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions. Axioms 2022, 11, 82. https://doi.org/10.3390/axioms11020082
Zhang Z, Farid G, Mehmood S, Jung C-Y, Yan T. Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions. Axioms. 2022; 11(2):82. https://doi.org/10.3390/axioms11020082
Chicago/Turabian StyleZhang, Zhiqiang, Ghulam Farid, Sajid Mehmood, Chahn-Yong Jung, and Tao Yan. 2022. "Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions" Axioms 11, no. 2: 82. https://doi.org/10.3390/axioms11020082
APA StyleZhang, Z., Farid, G., Mehmood, S., Jung, C. -Y., & Yan, T. (2022). Generalized k-Fractional Chebyshev-Type Inequalities via Mittag-Leffler Functions. Axioms, 11(2), 82. https://doi.org/10.3390/axioms11020082