An Application of Sălăgean Operator Concerning Starlike Functions †
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Acu, M.; Oros, G. Starlikeness condition for a new differential-integral operator. Mathematics 2020, 8, 694. [Google Scholar] [CrossRef]
- Oros, G.I.; Alb Lupaș, A. Sufficient conditions for univalence obtained by using Briot-Bouquet differential subordination. Math. Stat. 2020, 8, 26–136. [Google Scholar] [CrossRef]
- Páll-Szabó, Á.O.; Wanas, A.K. Coefficient estimates for some new classes of bi-Bazilevič functions of Ma-Minda type involving the Sălăgean integro-differential operator. Quaest. Math. 2021, 44, 495–502. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I. Strong differential superordination results involving extended Sălăgean and Ruscheweyh Operators. Mathematics 2021, 9, 2487. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators. Symmetry 2021, 13, 1553. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Madian, S.M. Fekete–Szegö properties for quasi-subordination class of complex order defined by Sălăgean operator. Afr. Mat. 2020, 31, 483–492. [Google Scholar] [CrossRef]
- Sălăgean, G.S. Subclasses of Univalent Functions. In Complex Analysis—Fifth Romanian-Finnish Seminar, Part I Bucharest; Lecture Notes in Mathematics 1013; Springer: Berlin/Heidelberg, Germany, 1981; pp. 362–372. [Google Scholar]
- Robertson, M.I. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Wilken, D.R.; Feng, J. A remark on convex and starlike functions. J. Lond. Math. Soc. 1980, 2, 287–290. [Google Scholar] [CrossRef]
- Eenigenburg, P.J.; Keogh, F.R. The Hardy class of some univalent functions and their derivatives. Mich. Math. J. 1970, 17, 335–346. [Google Scholar] [CrossRef]
- Nunokawa, M. On starlikeness of Libera transformation. Complex Var. Elliptic Equs. 1991, 17, 79–83. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Kim, Y.C.; Lee, K.S.; Srivastava, H.M. Certain classes of integral operators associated with the Hardy space of analytic functions. Complex Var. Elliptic Equs. 1992, 20, 1–12. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Marcel Dekker Inc.: New York, NY, USA, 2000. [Google Scholar]
- Jack, I.S. Functions starlike and convex of order α. J. Lond. Math. Soc. 1971, 2, 469–474. [Google Scholar] [CrossRef]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Elobaid, R.M.; Obaiys, S.J. Geometric Inequalities via a Symmetric Differential Operator Defined by Quantum Calculus in the Open Unit Disk. J. Funct. Spaces 2020, 2020, 6932739. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Darus, M. Univalent functions formulated by the Sălăgean-difference operator. Int. J. Anal. Appl. 2019, 17, 652–658. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Güney, H.Ö.; Oros, G.I.; Owa, S. An Application of Sălăgean Operator Concerning Starlike Functions. Axioms 2022, 11, 50. https://doi.org/10.3390/axioms11020050
Güney HÖ, Oros GI, Owa S. An Application of Sălăgean Operator Concerning Starlike Functions. Axioms. 2022; 11(2):50. https://doi.org/10.3390/axioms11020050
Chicago/Turabian StyleGüney, Hatun Özlem, Georgia Irina Oros, and Shigeyoshi Owa. 2022. "An Application of Sălăgean Operator Concerning Starlike Functions" Axioms 11, no. 2: 50. https://doi.org/10.3390/axioms11020050
APA StyleGüney, H. Ö., Oros, G. I., & Owa, S. (2022). An Application of Sălăgean Operator Concerning Starlike Functions. Axioms, 11(2), 50. https://doi.org/10.3390/axioms11020050