Global Well-Posedness of the Dissipative Quasi-Geostrophic Equation with Dispersive Forcing
Abstract
:1. Introduction
2. Main Results
3. Preliminaries
- ;
- ,
4. Linear Estimates
5. Proofs of Theorems 1 and 2
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Held, I.M.; Pierrehumbert, R.T.; Garner, S.T.; Swanson, K.L. Surface quasi-geostrophic dynamics. J. Fluid Mech. 1995, 282, 1–20. [Google Scholar] [CrossRef]
- Kiselev, A.; Nazarov, F. Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation. Nonlinearity 2010, 23, 549–554. [Google Scholar] [CrossRef] [Green Version]
- Sukhatme, J.; Smith, L.M. Local and Nonlocal Dispersive Turbulence. Phys. Fluids 2009, 21, 056603. [Google Scholar] [CrossRef]
- Pedlosky, J. Geophysical Fluid Dynamics, 2nd ed.; Springer: New York, NY, USA, 1987. [Google Scholar]
- Córdoba, A.; Cxoxrdoba, D. A maximum principle applied to quasi-geostrophic equations. Comm. Math. Phys. 2004, 249, 511–528. [Google Scholar] [CrossRef]
- Babin, A.; Mahalov, A.; Nicolaenko, B. On the regularity of three-dimensional rotating Euler-Boussinesq equations. Math. Model. Methods Appl. Sci. 1999, 9, 1089–1121. [Google Scholar] [CrossRef] [Green Version]
- Majda, A. Introduction to PDEs and Waves for the Atmosphere and Ocean; Courant Lecture Notes in Math; New York University, Courant Institute of Mathematical Sciences: New York, NY, USA; American Mathematical Society: Providence, RI, USA, 2003. [Google Scholar]
- Chemin, J.-Y.; Desjardins, B.; Gallagher, I.; Grenier, E. Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier-Stokes Equations; Volume 32 of Oxford Lecture Series in Mathematics and its Applications; The Clarendon Press, Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Constantin, P.; Wu, J. Behaviour of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 1999, 30, 937–948. [Google Scholar] [CrossRef]
- Resnick, S. Dynamical Problems in Nonlinear Advective Partial Differential Equations. Ph.D. Thesis, University of Chicago, Chicago, IL, USA, 1995. [Google Scholar]
- Caffarelli, L.; Vasseur, A. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 2010, 171, 1903–1930. [Google Scholar] [CrossRef] [Green Version]
- Kiselev, A.; Nazarov, F.; Volberg, A. Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 2007, 167, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Chae, D.; Lee, J. Global well-posedness in the super-critical dissipative quasigeostrophic equations. Comm. Math. Phys. 2003, 233, 297–311. [Google Scholar] [CrossRef]
- Dong, H.; Li, D. On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces. J. Differ. Equ. 2010, 248, 2684–2702. [Google Scholar] [CrossRef]
- Hmidi, T.; Keraani, S. Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces. Adv. Math. 2007, 214, 618–638. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, Q. Weak-strong uniqueness criterion for the β-generalized surface quasi-geostrophic equation. Monatsh. Math. 2013, 172, 431–440. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Q. On the Serrin’s regularity criterion for the β-generalized dissipative surface quasi-geostrophic equation. Chin. Ann. Math. Ser. B 2015, 36, 947–956. [Google Scholar] [CrossRef]
- Cannone, M.; Miao, C.; Xue, L. Global regularity for the supercritical dissipative quasi-geostrophic equation with large dispersive forcing. Proc. Lond. Math. Soc. 2013, 106, 650–674. [Google Scholar] [CrossRef] [Green Version]
- Wan, R.; Chen, J. Global well-posedness of smooth solution to the supercritical SQG equation with large dispersive forcing and small viscosity. Nonlinear Anal. 2017, 164, 54–66. [Google Scholar] [CrossRef]
- Angulo-Castillo, V.; Ferreira, L.; Kosloff, L. Long-time solvability for the 2D dispersive SQG equation with improved regularity. Discret. Contin. Dyn. Syst. 2020, 40, 1411–1433. [Google Scholar] [CrossRef] [Green Version]
- Fujii, M. Long time existence and asymptotic behavior of solutions for the 2d quasi-geostrophic equation with large dispersive forcing. J. Math. Fluid Mech. 2021, 23, 12. [Google Scholar]
- Sun, J.; Guo, B.; Yang, M. Sharp dispersive estimates for an anisotropic linear operator group. Appl. Math. Lett. 2020, 103, 106212. [Google Scholar] [CrossRef]
- Bahouri, H.; Chemin, J.-Y.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 2011; Volume 343. [Google Scholar]
- Abidi, H.; Paicu, M. Existence globale pour un fluide inhomogène(French). Ann. Inst. Fourier (Grenoble) 2007, 57, 883–917. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Z. Global well-posedness for nonlocal fractional Keller-Segel systems in critical Besov spaces. Nonlinear Anal. 2010, 72, 3173–3189. [Google Scholar]
- Tomas, P.A. A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc. 1975, 81, 477–478. [Google Scholar] [CrossRef] [Green Version]
- Strichartz, R. Restriction of Fourier transform to quadratic surfaces and decay of solutions to the wave equation. Duke Math J. 1977, 44, 705–714. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Zou, L. Global Well-Posedness of the Dissipative Quasi-Geostrophic Equation with Dispersive Forcing. Axioms 2022, 11, 720. https://doi.org/10.3390/axioms11120720
Sun J, Zou L. Global Well-Posedness of the Dissipative Quasi-Geostrophic Equation with Dispersive Forcing. Axioms. 2022; 11(12):720. https://doi.org/10.3390/axioms11120720
Chicago/Turabian StyleSun, Jinyi, and Lingjuan Zou. 2022. "Global Well-Posedness of the Dissipative Quasi-Geostrophic Equation with Dispersive Forcing" Axioms 11, no. 12: 720. https://doi.org/10.3390/axioms11120720
APA StyleSun, J., & Zou, L. (2022). Global Well-Posedness of the Dissipative Quasi-Geostrophic Equation with Dispersive Forcing. Axioms, 11(12), 720. https://doi.org/10.3390/axioms11120720