Regularity and Decay of Global Solutions for the Generalized Benney-Lin Equation Posed on Bounded Intervals and on a Half-Line
Abstract
:1. Introduction
2. Notations and Auxiliary Facts
3. Generalized Benney-Lin Equation Posed on Bounded Intervals
4. Stability Intervals. Small Solutions
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benney, D.J. Long waves on liquid films. J. Math. Phys. 1966, 45, 150–155. [Google Scholar] [CrossRef]
- Lin, S.P. Finite amplitude side band stability of a viscous film. J. Fluid Mech. 1974, 63, 417–429. [Google Scholar] [CrossRef]
- Kuramoto, Y.; Tsuzuki, T. On the formation of dissipative structures in reaction-diffusion systems. Progr. Theor. Phys. 1975, 54, 687–699. [Google Scholar] [CrossRef] [Green Version]
- Sivashinsky, G.I. Nonlinear analysis of hydrodinamic instability in laminar flames-1. Derivation of basic equations. Acta Astronauica 1977, 4, 1177–1206. [Google Scholar] [CrossRef]
- Cross, M.C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 1993, 65, 851–1086. [Google Scholar] [CrossRef] [Green Version]
- Biagioni, H.A.; Bona, J.L.; Iorio, R.J., Jr.; Scialom, M. On the Korteweg de Vries-Kuramoto-Sivashinsky Equation. Adv. Differ. Equations 1996, 1, 1–20. [Google Scholar]
- Cousin, A.T.; Larkin, N.A. Kuramoto-Sivashinsky equation in domains with moving boundaries. Port. Math. 2002, 59, 335–349. [Google Scholar]
- Doronin, G.G.; Larkin, N.A. Kawahara equation in a bounded domain. Discret. Contin. Dyn. Syst. Ser. B 2008, 10, 783–799. [Google Scholar] [CrossRef]
- Feng, B.F.; Malomed, B.A.; Kawahara, T. Stable Periodic Waves in Coupled Sivashinsky-Korteweg-de Vries Equations. arXiv 2002, arXiv:nlin/0209003. [Google Scholar] [CrossRef] [Green Version]
- Kato, T. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Stud. Appl. Math. Adv. Math. Suppl. Stud. 1983, 8, 93–128. [Google Scholar]
- Larkin, N.A. Correct initial boundary value problems for dispersive equations. J. Math. Anal. Appl. 2008, 344, 1079–1092. [Google Scholar] [CrossRef] [Green Version]
- Larkin, N.A. Korteweg de Vries and Kuramoto-Sivashinsky equations in bounded domains. J. Math. Anal. Appl. 2004, 297, 169–185. [Google Scholar] [CrossRef]
- Larkin, N.A.; Simões, M.H. The Kawahara equation on bounded intervals and on a half-line. Nonlinear Anal. 2015, 127, 397–412. [Google Scholar] [CrossRef]
- Nicolaenko, B.; Scheurer, B.; Temam, R. Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors. Phys. D 1985, 16, 155–183. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.-Y.; Zhang, Z. A nonhomogeneous boundary value problem for the Kuramoto-Sivashinsky equation in a quarter plane. arXiv 2016, arXiv:1607.00506v2. [Google Scholar] [CrossRef] [Green Version]
- Faminskii, A.V. Odd-order quasilinear evolution equations with general nonlinearity on bounded intervals. Lobachevskii J. Math. 2021, 42, 875–888. [Google Scholar] [CrossRef]
- Faminskii, A.V.; Larkin, N.A. Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval. Electron. J. Differ. Equ. 2010, 2010, 1–20. [Google Scholar]
- Larkin, N.A.; Luchesi, J. Initial-boundary value problems for generalized dispersive equations of higher orders posed on bounded intervals. J. Appl. Math. Optim. 2019, 83, 1081–1102. [Google Scholar] [CrossRef]
- Fonseca, G.; Linares, F.; Ponce, G. Global existence for the critical generalized KDV equation. Proc. AMS 2002, 131, 1847–1855. [Google Scholar] [CrossRef]
- Martel, Y.; Merle, F. Instability of solutions for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal. 2001, 11, 74–123. [Google Scholar] [CrossRef]
- Jeffrey, A.; Kakutani, T. Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation. SIAM Rev. 1972, 14, 582–643. [Google Scholar] [CrossRef]
- Linares, F.; Pazoto, A. On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping. Proc. Am. Math. Soc. 2007, 135, 1515–1522. [Google Scholar] [CrossRef] [Green Version]
- Larkin, N.A. Regular global solutions for a generalized KdV equation posed on a half-line. arXiv 2020, arXiv:2006.06645v1. [Google Scholar]
- Castelli, M.; Doronin, G. Modified and subcritical Zakharov-Kuznetsov equations posed on rectangles. J. Differ. Equ. 2021, 275, 554–580. [Google Scholar] [CrossRef]
- Adams, R.A.; Fournier, J.F. Sobolev Spaces; Elsevier Sciuence Ltd.: Oxford, UK, 2003. [Google Scholar]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2011. [Google Scholar]
- Steklov, A.V. The problem of cooling of an heterogeneous rigid rod. Commun. Kharkov Math. Soc. Ser. 1896, 2, 136–181. (In Russian) [Google Scholar]
- Nirenberg, L. On elliptic partial differential equations. In Annali Della Scuola Normale Superiore di Pisa; Classe di Scienze 3ª Série; Springer: Berlin/Heidelberg, Germany, 1959; pp. 115–162. [Google Scholar]
- Coddington, E.; Levinson, N. Theory of Ordinary Differential Equations; MacGraw-Hill: New York, NY, USA, 1955. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larkin, N.A. Regularity and Decay of Global Solutions for the Generalized Benney-Lin Equation Posed on Bounded Intervals and on a Half-Line. Axioms 2022, 11, 596. https://doi.org/10.3390/axioms11110596
Larkin NA. Regularity and Decay of Global Solutions for the Generalized Benney-Lin Equation Posed on Bounded Intervals and on a Half-Line. Axioms. 2022; 11(11):596. https://doi.org/10.3390/axioms11110596
Chicago/Turabian StyleLarkin, Nikolai A. 2022. "Regularity and Decay of Global Solutions for the Generalized Benney-Lin Equation Posed on Bounded Intervals and on a Half-Line" Axioms 11, no. 11: 596. https://doi.org/10.3390/axioms11110596
APA StyleLarkin, N. A. (2022). Regularity and Decay of Global Solutions for the Generalized Benney-Lin Equation Posed on Bounded Intervals and on a Half-Line. Axioms, 11(11), 596. https://doi.org/10.3390/axioms11110596