# Simulation of Marine Debris Path Using Mathematical Model in the Gulf of Thailand

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mathematical Method

#### 2.1. The Oceanic Model

#### 2.2. Solving Method

#### 2.2.1. The Finite Difference Method (FDM)

#### 2.2.2. The Splitting Method

#### 2.2.3. Spin-Up Method

#### 2.2.4. Root Mean Square Error

#### 2.3. Lagrangian Particle Tracking Model

#### 2.4. Operational Diagram

## 3. Results

#### 3.1. Oceanic Model

#### 3.2. Marine Debris’s Path

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Chanthamat, Y.; Israngkun Na Ayutthaya, A. Marine Garbage, the National Plan Must Not Neglect the Community. 2021. Available online: https://tdri.or.th/2021/06/worldoceanday/ (accessed on 7 April 2021).
- Abolfathi, S.; Cook, S.; Yeganeh-Bakhtiary, A.; Borzooei, S.; Pearson, J. Microplastics Transport and Mixing Mechanisms in The Nearshore Region. Coast. Eng. Proc.
**2020**, 36, 63. [Google Scholar] [CrossRef] - Abolfathi, S.; Pearson, J. Solute Dispersion in The Nearshore due to Oblique Waves. Coast. Eng. Proc.
**2014**, 1, 49. [Google Scholar] [CrossRef] [Green Version] - Abolfathi, S.; Pearson, J. Application of Smoothed Particle Hydrodynamic (SPH) in Nearshore Mixing: A Comparison to Laboratory Data. Coast. Eng. Proc.
**2017**, 35, 16. [Google Scholar] [CrossRef] - Ren, Z.Y.; Zhao, X.; Wang, B.L.; Dias, F.; Liu, H. Characteristics of wave amplitude and currents in South China Sea induced by a virtual extreme tsunami. J. Hydrodyn.
**2017**, 29, 377–392. [Google Scholar] [CrossRef] - Ren, Z.; Liu, H.; Jimenez, C.; Wang, Y. Tsunami resonance and standing waves in the South China Sea. Ocean. Eng.
**2022**, 262, 112323. [Google Scholar] [CrossRef] - Guo, D.; Zeng, Q.; Ji, Z. A Numerical model of Storm Surges and Its Open Boundary Problems. Chin. J. Atmos. Sci.
**1992**, 16, 193–204. [Google Scholar] - Collins, S.; James, R.; Ray, P.; Chen, K.; Lassman, A.; Brownlee, J. Grids in Numerical Weather and Climate Models. Clim. Chang. Reg. Responses
**2013**, 256, 111–128. [Google Scholar] - Aschariyaphotha, N.; Wongwises, P.; Wongwises, S.; Humphries, U.W.; You, X. Simulation of seasonal circulations and thermohaline variabilities in the Gulf of Thailand. Adv. Atmos. Sci.
**2008**, 25, 489–506. [Google Scholar] [CrossRef] - Carlson, D.F.; Suaria, G.; Aliani, S.; Fredj, E.; Fortibuoni, T.; Griffa, A.; Russo, A.; Melli, V. Combining Litter Observations with a Regional Ocean Model to Identify Sources and Sinks of Floating Debris in a Semi-enclosed Basin: The Adriatic Sea. Front. Mar. Sci.
**2017**, 4, 78. [Google Scholar] [CrossRef] [Green Version] - Seo, S.; Park, Y.G.; Kim, K. Destination of floating plastic debris released from ten major rivers around the Korean Peninsula. Environ. Int.
**2020**, 138, 105665. [Google Scholar] [CrossRef] [PubMed] - Seo, S.; Park, Y.G.; Kim, K. Tracking flood debris using satellite-derived ocean color and particle-tracking modeling. Mar. Pollut. Bull.
**2020**, 161, 111828. [Google Scholar] [CrossRef] [PubMed] - Yoon, J.-H.; Kawano, S.; Igawa, S. Modeling of marine litter drift and beaching in the Japan Sea. Mar. Pollut. Bull.
**2010**, 60, 448–463. [Google Scholar] [CrossRef] [PubMed] - Aongponyoskun, M. The Diffusion Coefficient of Seawater in Ao Si Racha. Kasetsart J. Nat. Sci.
**2008**, 42, 49–53. [Google Scholar]

**Figure 6.**The simulated (

**a**) mean surface current velocity from OCM and (

**b**) mean surface current from OSCAR in January 2020.

**Figure 7.**The simulated (

**a**) mean surface current velocity from OCM and (

**b**) mean surface current from OSCAR in April 2020.

**Figure 8.**The simulated (

**a**) mean surface current velocity from OCM and (

**b**) mean surface current from OSCAR in July 2020.

**Figure 9.**The simulated (

**a**) mean surface current velocity from OCM and (

**b**) mean surface current from OSCAR in October 2020.

**Figure 10.**The path of marine debris depends on the buoyancy ratio (

**a**) 100:1, (

**b**) 10:1, (

**c**) 1:1, (

**d**) 0:1, (

**e**) 1:10, and (

**f**) 1:100.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Phiphit, J.; Wangwongchai, A.; Humphries, U.W.
Simulation of Marine Debris Path Using Mathematical Model in the Gulf of Thailand. *Axioms* **2022**, *11*, 571.
https://doi.org/10.3390/axioms11100571

**AMA Style**

Phiphit J, Wangwongchai A, Humphries UW.
Simulation of Marine Debris Path Using Mathematical Model in the Gulf of Thailand. *Axioms*. 2022; 11(10):571.
https://doi.org/10.3390/axioms11100571

**Chicago/Turabian Style**

Phiphit, Jettapol, Angkool Wangwongchai, and Usa Wannasingha Humphries.
2022. "Simulation of Marine Debris Path Using Mathematical Model in the Gulf of Thailand" *Axioms* 11, no. 10: 571.
https://doi.org/10.3390/axioms11100571