Fuzzy Differential Subordination for Meromorphic Function
Abstract
:1. Introduction and Definitions
2. Preliminaries
- (ii)
- If , then we have , where and
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Dzitac, S.; Nădăban, S. Soft computing for decision-making in fuzzy environments: A tribute to Professor Ioan Dzitac. Mathematics 2021, 9, 1701. [Google Scholar] [CrossRef]
- Dzitac, I. Zadeh’s Centenary. Int. J. Comput. Commun. Control 2021, 16, 4102. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis 2012, 30, 55–64. [Google Scholar]
- Oros, G.I.; Oros, G. Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babes-Bolyai Math. 2012, 57, 239–248. [Google Scholar]
- Oros, G.I.; Oros, G. Briot-Bouquet fuzzy differential subordination. An. Univ. Oradea Fasc. Mat. 2012, 19, 83–87. [Google Scholar]
- Dzitac, I.; Filip, F.G.; Manolescu, M.J. Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh. Int. J. Comput. Commun. Control 2017, 12, 748–789. [Google Scholar] [CrossRef] [Green Version]
- Atshan, W.G.; Hussain, K.O. Fuzzy differential superordination. Theory Appl. Math. Comput. Sci. 2017, 7, 27–38. [Google Scholar]
- Alb Lupaş, A. A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
- Alb Lupaş, A.; Oros, G. On special fuzzy differential subordinations using Sălăgean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. An. Univ. Oradea Fasc. Mat. 2015, 22, 167–176. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- Wanas, A.K.; Majeed, A.H. Fuzzy differential subordination properties of analytic functions involving generalized differential operator. Sci. Int. 2018, 30, 297–302. [Google Scholar]
- Ibrahim, R.W. On the subordination and super-ordination concepts with applications. J. Comput. Theor. 2017, 14, 2248–2254. [Google Scholar] [CrossRef]
- Altai, N.H.; Abdulkadhim, M.M.; Imran, Q.H. On first order fuzzy differential superordination. J. Sci. Arts 2017, 3, 407–412. [Google Scholar]
- Alb Lupaş, A. Applications of the fractional calculus in fuzzy differential subordinations and superordinations. Mathematics 2021, 9, 2601. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Alb Lupaş, A. Fuzzy differential subordinations associated with an integral operator. An. Univ. Oradea Fasc. Mat. 2020, 27, 133–140. [Google Scholar]
- Alb Lupaş, A.; Oros, G.I. New applications of Salagean and Ruscheweyh operators for obtaining fuzzy differential subordinations. Mathematics 2021, 9, 2000. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Oros, G.I. Fuzzy differential subordinations connected with the linear operator. Math. Bohem. 2021, 146, 397–406. [Google Scholar] [CrossRef]
- Oros, G.I. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 229–240. [Google Scholar] [CrossRef]
- Rashid, S.; Khalid, A.; Sultana, S.; Hammouch, Z.; Shah, R.; Alsharif, A.M. A novel analytical view of time-fractional Korteweg-De Vries equations via a new integral transform. Symmetry 2021, 13, 1254. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Jan, R.; Jan, A.; Deebani, W.; Shutaywi, M. Fractional-calculus analysis of the transmission dynamics of the dengue infection. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 053130. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Cătaş, A. Fuzzy differential subordination of the Atangana–Baleanu fractional integral. Symmetry 2021, 13, 1929. [Google Scholar] [CrossRef]
- Oros, G.I.; Dzitac, S. Applications of subordination chains and fractional integral in fuzzy differential subordinations. Mathematics 2022, 10, 1690. [Google Scholar] [CrossRef]
- Jung, I.B.; Kim, Y.C.; Srivastava, H.M. The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J. Math. Anal. Appl. 1993, 176, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Subordinants of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar] [CrossRef]
- Gal, S.G.; Ban, A.I. Elemente de Matematica Fuzzy; University of Oradea: Oradea, Romania, 1996. [Google Scholar]
- Alb Lupaş, A. A note on special fuzzy differential subordinations using multiplier transformation and Ruscheweyh derivative. J. Comput. Anal. Appl. 2018, 25, 1116–1124. [Google Scholar]
- Oros, G.I. Fuzzy differential subordinations obtained using a hypergeometric integral operator. Mathematics 2021, 9, 2539. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Wanas, A.K. Some properties for fuzzy differential subordination defined by Wanas operator. Earthline J. Math. Sci. 2020, 4, 51–62. [Google Scholar] [CrossRef]
- Wanas, A.K.; Bulut, S. Some results for fractional derivative associated with fuzzy differential subordinations. J. Al-Qadisiyah Comput. Sci. Math. 2020, 12, 27. [Google Scholar]
- Bulboaca, T. Differential Subordinations and Superordinations: New Results; House of Scientific Boook Publ.: Cluj-Napoca, Romania, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, S.; Khan, N.; Arif, M.; Alburaikan, A. Fuzzy Differential Subordination for Meromorphic Function. Axioms 2022, 11, 534. https://doi.org/10.3390/axioms11100534
El-Deeb S, Khan N, Arif M, Alburaikan A. Fuzzy Differential Subordination for Meromorphic Function. Axioms. 2022; 11(10):534. https://doi.org/10.3390/axioms11100534
Chicago/Turabian StyleEl-Deeb, Sheza, Neelam Khan, Muhammad Arif, and Alhanouf Alburaikan. 2022. "Fuzzy Differential Subordination for Meromorphic Function" Axioms 11, no. 10: 534. https://doi.org/10.3390/axioms11100534
APA StyleEl-Deeb, S., Khan, N., Arif, M., & Alburaikan, A. (2022). Fuzzy Differential Subordination for Meromorphic Function. Axioms, 11(10), 534. https://doi.org/10.3390/axioms11100534