On the Truncated Multidimensional Moment Problems in
Abstract
:1. Introduction
2. Truncated Moment Problems on
- (a)
- ;
- (b)
- , .
3. Conclusions
Funding
Conflicts of Interest
References
- Curto, R.; Fialkow, L. Solution of the Truncated Complex Moment Problem for Flat Data; American Mathematical Society: Providence, RI, USA, 1996; Volume 119. [Google Scholar]
- Kimsey, D.P.; Putinar, M. Complex orthogonal polynomials and numerical quadrature via hyponormality. Comput. Methods Funct. Theory 2018, 18, 495–510. [Google Scholar] [CrossRef]
- Kimsey, D.P.; Woerdeman, H.J. The truncated matrix-valued K-moment problem on ℝd, ℂd, and 𝕋d. Trans. Am. Math. Soc. 2013, 365, 5393–5430. [Google Scholar] [CrossRef] [Green Version]
- Berezans’kiĭ, J.M. Expansions in Eigenfunctions of Selfadjoint Operators; American Mathematical Society: Providence, RI, USA, 1968. [Google Scholar]
- Berg, C.C.; Christensen, J.P.R.; Ressel, P. Harmonic Analysis on Semigroups; Springer: New York, NY, USA, 1984. [Google Scholar]
- Curto, R.; Fialkow, L. Flat extensions of positive moment matrices: Recursively generated relations. Mem. Am. Math. Soc. 1998, 136, 254. [Google Scholar] [CrossRef]
- Marshall, M. Positive Polynomials and Sums of Squares; American Mathematical Society: Providence, RI, USA, 2008; Volume 146. [Google Scholar]
- Schmüdgen, K. The Moment Problem; Graduate Texts in Mathematics; Springer: Cham, Switerland, 2017. [Google Scholar]
- Fuglede, B. The multidimensional moment problem. Expo. Math. 1983, 1, 47–65. [Google Scholar]
- Zagorodnyuk, S.M. The Nevanlinna-type parametrization for the operator Hamburger moment problem. J. Adv. Math. Stud. 2017, 10, 183–199. [Google Scholar]
- Zagorodnyuk, S.M. The operator approach to the truncated multidimensional moment problem. Concr. Oper. 2019, 6, 1–19. [Google Scholar] [CrossRef]
- Vasilescu, F.-H. Moment problems in hereditary function spaces. Concr. Oper. 2019, 6, 64–75. [Google Scholar] [CrossRef]
- Zagorodnyuk, S. On the truncated two-dimensional moment problem. Adv. Oper. Theory 2018, 3, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Idrissi, K.; Zerouali, E.H. Complex moment problem and recursive relations. Methods Funct. Anal. Topol. 2019, 25, 15–34. [Google Scholar]
- Yoo, S. Sextic moment problems on 3 parallel lines. Bull. Korean Math. Soc. 2017, 54, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Nagy, B.C.; Foias, C.; Bercovici, H.; Kérchy, V. Harmonic Analysis of Operators on Hilbert Space, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Lasserre, J.-B. Moments, Positive Polynomials and Their Applications; Imperial College Press Optimization Series, 1; Imperial College Press: London, UK, 2010. [Google Scholar]
- Chihara, T.S. An Introduction to Orthogonal Polynomials; Mathematics and its Applications; Gordon and Breach Science Publishers: New York, NY, USA; London, UK; Paris, France, 1978; Volume 13. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagorodnyuk, S.
On the Truncated Multidimensional Moment Problems in
Zagorodnyuk S.
On the Truncated Multidimensional Moment Problems in
Zagorodnyuk, Sergey.
2022. "On the Truncated Multidimensional Moment Problems in
Zagorodnyuk, S.
(2022). On the Truncated Multidimensional Moment Problems in