Generalized Summation Formulas for the Kampé de Fériet Function
Abstract
1. Introduction and Preliminaries
2. Results Required
3. General Summation Formulas for the Kampé de Fériet Function
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
- Rainville, E.D. Special Functions; Chelsea Publishing Company: Bronx, NY, USA, 1971. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Milovanović, G.V.; Parmar, R.K.; Rathie, A.K. A study of generalized summation theorems for the series 2F1 with an applications to Laplace transforms of convolution type integrals involving Kummer’s functions 1F1. Appl. Anal. Discret. Math. 2018, 12, 257–272. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Exton, H. Multiple Hypergeometric Functions; Halsted Press: New York, NY, USA, 1976. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Series: Mathematics and Its Applications; Ellis Horwood Ltd.: Chichester, UK; Halsted Press [John Wiley & Sons, Inc.]: New York, NY, USA, 1985. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Watson’s theorem on the sum of a 3F2. Indian J. Math. 1992, 34, 23–32. [Google Scholar]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K.; Arora, K. Generalizations of Dixon’s theorem on the sum of a 3F2. Math. Comput. 1994, 62, 267–276. [Google Scholar] [CrossRef]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Whipple’s theorem on the sum of a 3F2. J. Comput. Appl. Math. 1996, 72, 293–300. [Google Scholar] [CrossRef]
- Rakha, M.A.; Rathie, A.K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications. Integral Transform. Spec. Funct. 2011, 22, 823–840. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rakha, M.A.; Rathie, A.K. Extensions of certain classical summation theorems for the series 2F1, 3F2 and 4F3 with applications in Ramanujan’s summations. Int. J. Math. Math. Sci. 2010, 26, 309503. [Google Scholar] [CrossRef]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphérique Polynômes d’Hermité; Gauthiers Villars: Paris, France, 1926. [Google Scholar]
- Humbert, P. The confluent hypergeometric functions of two variables. Proc. Roy. Soc. Edinb. 1922, 41, 73–96. [Google Scholar] [CrossRef]
- Kampé de Fériet, J. Les fonctions hypergéometriques d’ordre supérieur à deux variables. C. R. Acad. Sci. Paris 1921, 173, 401–404. [Google Scholar]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions. Quart. J. Math. (Oxf. Ser.) 1940, 11, 249–270. [Google Scholar] [CrossRef]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions (II). Quart. J. Math. (Oxf. Ser.) 1941, 12, 112–128. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Panda, R. An integral representation for the product of two Jacobi polynomials. J. Lond. Math. Soc. 1976, 12, 419–425. [Google Scholar] [CrossRef]
- Buschman, R.G.; Srivastava, H.M. Series identities and reducibility of Kampé de Fériet functions. Math. Proc. Camb. Philos. Soc. 1982, 91, 435–440. [Google Scholar] [CrossRef]
- Carlitz, L. Summation of a double hypergeometric series. Mathematics (Catania) 1967, 22, 138–142. [Google Scholar]
- Chan, W.-C.; Chen, K.-Y.; Chyan, C.-J.; Srivastava, H.M. Some multiple hypergeometric transformations and associated reduction formulas. J. Math. Anal. Appl. 2004, 294, 418–437. [Google Scholar] [CrossRef]
- Chen, K.-Y.; Srivastava, H.M. Series identities and associated families of generating functions. J. Math. Anal. Appl. 2005, 311, 582–599. [Google Scholar] [CrossRef][Green Version]
- Chen, W.-C.; Srivastava, H.M. Ordinary and basic bivariate hypergeometric transformations associated with the Appell and Kampé de Fériet functions. J. Comput. Appl. Math. 2003, 156, 355–370. [Google Scholar] [CrossRef]
- Cvijović, D.; Miller, R. A reduction formula for the Kampé de Fériet function. Appl. Math. Lett. 2010, 23, 769–771. [Google Scholar] [CrossRef]
- Jain, R.N. Sum of a double hypergeometric series. Mathematics (Catania) 1966, 21, 300–301. [Google Scholar]
- Van der Jeugt, J. Transformation formula for a double Clausenian hypergeometric series, its q-analogue and its invariance group. J. Comput. Appl. Math. 2002, 139, 65–73. [Google Scholar] [CrossRef]
- Van der Jeugt, J.; Pitre, S.N.; Rao, K.S. Multiple hypergeometric functions and g-j coefficients. J. Phys. A Math. Gen. 1994, 27, 5251–5264. [Google Scholar] [CrossRef]
- Van der Jeugt, J.; Pitre, S.N.; Rao, K.S. Transformation and summation formulas for double hypergeometric series. J. Comput. Appl. Math. 1997, 83, 185–193. [Google Scholar] [CrossRef][Green Version]
- Karlsson, P.W. Some reduction formulas for double series and Kampé de Fériet functions. Nederl. Akad. Wetensch. Indag Math. 1984, 87, 31–36. [Google Scholar] [CrossRef]
- Kim, Y.S. On certain reducibility of Kampé de Fériet function. Honam Math. J. 2009, 31, 167–176. [Google Scholar] [CrossRef]
- Krupnikov, E.D. A Register of Computer Oriented Reduction of Identities for Kampé de Fériet Function; Draft Manuscript; Novosibirsk, Russia, 1996. [Google Scholar]
- Miller, A.R. On a Kummer-type transformation for the generalized hypergeometric function 2F2. J. Comput. Appl. Math. 2003, 157, 507–509. [Google Scholar] [CrossRef]
- Rao, K.S.; Van der Jeugt, J. Stretched g-j coefficients and summation theorems. J. Phys. A Math. Gen. 1994, 27, 3083–3090. [Google Scholar] [CrossRef]
- Saran, S. Reducibility of generalized Kampé de Fériet function. Ganita 1980, 31, 89–98. [Google Scholar]
- Shankar, O.; Saran, S. Reducibility of Kampé de Fériet function. Ganita 1970, 21, 9–16. [Google Scholar]
- Sharma, B.L. Sum of a double series. Proc. Am. Math. Soc. 1975, 52, 136–138. [Google Scholar] [CrossRef]
- Sharma, B.L. A note on hypergeometric functions of two variables. Indag. Math. 1976, 79, 169–172. [Google Scholar] [CrossRef]
- Singhal, R.P. Transformation formulas for the modified Kampé de Fériet function. Math. Stud. 1972, 39, 327–329. [Google Scholar]
- Srivastava, H.M. The sum of a multiple hypergeometric series. Indag Math. 1977, 80, 448–452. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampé de Fériet’s double hypergeometric series. Math. Nachr. 1972, 53, 151–159. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W. Transformation and summation formulae for Kampé de Fériet series. J. Math. Anal. Appl. 2014, 409, 100–110. [Google Scholar] [CrossRef]
- Choi, J.; Rathie, A.K. General summation formulas for the Kampé de Fériet function. Montes Taures J. Pure Appl. Math. 2019, 1, 107–128. [Google Scholar]
- Choi, J.; Qureshi, M.I.; Bhat, A.H.; Majid, J. Reduction formulas for generalized hypergeometric series associated with new sequences and applications. Fractal Fract. 2021, 5, 150. [Google Scholar] [CrossRef]
- Brychkov, Y.A. Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas; CRC Press, Taylor & Fancis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series, Vol. 3: More Special Functions; Overseas Publishers Association: Amsterdam, The Netherlands, 1986. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Milovanović, G.V.; Rathie, A.K. Generalized Summation Formulas for the Kampé de Fériet Function. Axioms 2021, 10, 318. https://doi.org/10.3390/axioms10040318
Choi J, Milovanović GV, Rathie AK. Generalized Summation Formulas for the Kampé de Fériet Function. Axioms. 2021; 10(4):318. https://doi.org/10.3390/axioms10040318
Chicago/Turabian StyleChoi, Junesang, Gradimir V. Milovanović, and Arjun K. Rathie. 2021. "Generalized Summation Formulas for the Kampé de Fériet Function" Axioms 10, no. 4: 318. https://doi.org/10.3390/axioms10040318
APA StyleChoi, J., Milovanović, G. V., & Rathie, A. K. (2021). Generalized Summation Formulas for the Kampé de Fériet Function. Axioms, 10(4), 318. https://doi.org/10.3390/axioms10040318