On q-Horn Hypergeometric Functions H6 and H7
Abstract
:1. Introduction
2. Main Result
3. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.P. Some basic hypergeometric identities. Ann. Soc. Sci. Brux. Ser. I 1953, 67, 186–202. [Google Scholar]
- Andrews, G.E. Summations and transformations for basic Appell series. J. Lond. Math. Soc. 1972, 4, 618–622. [Google Scholar] [CrossRef]
- Harsh, H.V.; Kim, Y.S.; Rakha, M.A.; Rathie, A.K. A study of q-contiguous function relations. Commun. Korean Math. Soc. 2016, 31, 65–94. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.E.H.; Libis, C.A. Contiguous relations, basic hypergeometric functions, and orthogonal polynomials. J. Math. Anal. Appl. 1989, 141, 349–372. [Google Scholar] [CrossRef] [Green Version]
- Jain, V.K. Some expansions involving basic hypergeometric functions of two variables. Pac. J. Math. 1980, 91, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Jain, V.K. Certain transformations of basic hypergeometric series and their applications. Pac. J. Math. 1982, 101, 333–349. [Google Scholar] [CrossRef] [Green Version]
- Jain, V.K.; Vertna, A. Transformations between basic hypergeometric series on different bases and identities of Rogers-Ramanujan type. J. Math. Anal. Appl. 1980, 76, 230–269. [Google Scholar]
- Jain, V.K.; Vorma, A. Some transformations of basic hypergeometric functions, Part I. SIAM J. Math. Anal. 1981, 12, 943–956. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rathie, A.K.; Choi, J. Three term contiguous functional relations for basic hypergeometric series 2Φ1. Commun. Korean Math. Soc. 2005, 20, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Rathie, A.K.; Lee, C.H. On q-analog of Kummer’s theorem and its contiguous results. Commun. Korean Math. Soc. 2003, 18, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.P. On certain transformation formulae involving basic hypergeometric functions. J. Ramanujan Soc. Math. Math. Sci. 2014, 2, 9–16. [Google Scholar]
- Srivastava, H.M.; Jain, V.K. q-Series identities and reducibility of basic double hypergeometric functions. Can. J. Math. (CJM) 1986, 38, 215–231. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shehata, A. A family of new q-Extensions of the Humbert functions. Eur. J. Math. Sci. 2018, 4, 13–26. [Google Scholar]
- Srivastava, H.M.; Khan, S.; Araci, S.; Acikgoz, M.; Mumtaz Riyasat, M. A general class of the three-variable unified Apostol-Type q-polynomials and multiple Power q-Sums. Bull. Iran. Math. Soc. 2020, 46, 519–542. [Google Scholar] [CrossRef]
- Swarttouw, R.F. The contiguous function relations for basic hypergeometric function. J. Math. Anal. Appl. 1990, 149, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Sahai, V.; Verma, A. Nth-order q-derivatives of Srivastava’s General Triple q-hypergeometric Series with Respect to Parameters. Kyungpook Math. J. 2016, 56, 911–925. [Google Scholar] [CrossRef]
- Sahai, V.; Verma, A. Recursion formulas for q-hypergeometric and q-Appell series. Commun. Korean Math. Soc. 2018, 33, 207–236. [Google Scholar]
- Guo, V.J.W.; Schlosser, M.J. Some q-Supercongruences from Transformation Formulas for Basic Hypergeometric Series. Constr. Approx. 2021, 53, 155–200. [Google Scholar] [CrossRef]
- Verma, A.; Sahai, V. Some recursion formulas for q-Lauricella series. Afr. Mat. 2020, 31, 643–686. [Google Scholar] [CrossRef]
- Verma, A.; Yadav, S. Recursion formulas for Srivastava’s general triple q-hypergeometric series. Afr. Mat. 2020, 31, 869–885. [Google Scholar] [CrossRef]
- Wei, C.; Gong, D. q-Extensions of Gauss fifteen contiguous relation for 2F1 series. Commun. Comput. Inf. Sci. 2011, 105, 85–92. [Google Scholar]
- Ernst, T. On the q-Analogues of Srivastava’s Triple Hypergeometric Functions. Axioms 2013, 2, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Araci, S.; Duran, U.; Acikgoz, M. Theorems on q-Frobenius-Euler polynomials under Sym (4). Util. Math. 2016, 101, 129–137. [Google Scholar]
- Araci, S.; Acikgoz, M.; Sen, E. On the extended Kim’s q-adic q-deformed fermionic integrals in the q-adic integer ring. J. Number Theory 2013, 133, 3348–3361. [Google Scholar] [CrossRef]
- Araci, S.; Ağyuz, E.; Acikgoz, M. On a q-analog of some numbers and polynomials. J. Inequalities Appl. 2015, 19, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Duran, U.; Acikgoz, M.; Araci, S. Symmetric identities involving weighted q-Genocchi polynomials under S4. Proc. Jangjeon Math. Soc. 2015, 18, 455–465. [Google Scholar]
- Duran, U.; Acikgoz, M.; Araci, S. Research on some new results arising from multiple q-calculus. Filomat 2018, 32, 1–9. [Google Scholar] [CrossRef]
- Pathan, M.A.; Shehata, A.; Moustafa, S.I. Certain new formulas for the Horn’s hypergeometric functions H1, H11. Acta Univ. Apulensis 2020, 64, 137–170. [Google Scholar]
- Shehata, A. On the (p,q)-Bessel functions from the view point of the generating functions method. J. Interdiscip. Math. 2020, 23, 1435–1448. [Google Scholar] [CrossRef]
- Shehata, A. On the (p,q)-Humbert functions from the view point of the generating functions method. J. Funct. Spaces 2020, 2020, 4794571. [Google Scholar] [CrossRef]
- Shehata, A. On basic Horn hypergeometric functions H3 and H4. Adv. Differ. Equ. 2020, 2020, 595. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; Volume 96. [Google Scholar]
- Jackson, F.H. Basic double hypergeometric functions (II). Q. J. Math. 1944, 15, 49–61. [Google Scholar] [CrossRef]
- Erdélyi, A.; Mangus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehata, A. On q-Horn Hypergeometric Functions H6 and H7. Axioms 2021, 10, 336. https://doi.org/10.3390/axioms10040336
Shehata A. On q-Horn Hypergeometric Functions H6 and H7. Axioms. 2021; 10(4):336. https://doi.org/10.3390/axioms10040336
Chicago/Turabian StyleShehata, Ayman. 2021. "On q-Horn Hypergeometric Functions H6 and H7" Axioms 10, no. 4: 336. https://doi.org/10.3390/axioms10040336
APA StyleShehata, A. (2021). On q-Horn Hypergeometric Functions H6 and H7. Axioms, 10(4), 336. https://doi.org/10.3390/axioms10040336