On q-Horn Hypergeometric Functions H6 and H7
Abstract
1. Introduction
2. Main Result
3. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.P. Some basic hypergeometric identities. Ann. Soc. Sci. Brux. Ser. I 1953, 67, 186–202. [Google Scholar]
- Andrews, G.E. Summations and transformations for basic Appell series. J. Lond. Math. Soc. 1972, 4, 618–622. [Google Scholar] [CrossRef]
- Harsh, H.V.; Kim, Y.S.; Rakha, M.A.; Rathie, A.K. A study of q-contiguous function relations. Commun. Korean Math. Soc. 2016, 31, 65–94. [Google Scholar] [CrossRef][Green Version]
- Ismail, M.E.H.; Libis, C.A. Contiguous relations, basic hypergeometric functions, and orthogonal polynomials. J. Math. Anal. Appl. 1989, 141, 349–372. [Google Scholar] [CrossRef][Green Version]
- Jain, V.K. Some expansions involving basic hypergeometric functions of two variables. Pac. J. Math. 1980, 91, 349–361. [Google Scholar] [CrossRef][Green Version]
- Jain, V.K. Certain transformations of basic hypergeometric series and their applications. Pac. J. Math. 1982, 101, 333–349. [Google Scholar] [CrossRef][Green Version]
- Jain, V.K.; Vertna, A. Transformations between basic hypergeometric series on different bases and identities of Rogers-Ramanujan type. J. Math. Anal. Appl. 1980, 76, 230–269. [Google Scholar]
- Jain, V.K.; Vorma, A. Some transformations of basic hypergeometric functions, Part I. SIAM J. Math. Anal. 1981, 12, 943–956. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rathie, A.K.; Choi, J. Three term contiguous functional relations for basic hypergeometric series 2Φ1. Commun. Korean Math. Soc. 2005, 20, 395–403. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rathie, A.K.; Lee, C.H. On q-analog of Kummer’s theorem and its contiguous results. Commun. Korean Math. Soc. 2003, 18, 151–157. [Google Scholar] [CrossRef][Green Version]
- Mishra, B.P. On certain transformation formulae involving basic hypergeometric functions. J. Ramanujan Soc. Math. Math. Sci. 2014, 2, 9–16. [Google Scholar]
- Srivastava, H.M.; Jain, V.K. q-Series identities and reducibility of basic double hypergeometric functions. Can. J. Math. (CJM) 1986, 38, 215–231. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shehata, A. A family of new q-Extensions of the Humbert functions. Eur. J. Math. Sci. 2018, 4, 13–26. [Google Scholar]
- Srivastava, H.M.; Khan, S.; Araci, S.; Acikgoz, M.; Mumtaz Riyasat, M. A general class of the three-variable unified Apostol-Type q-polynomials and multiple Power q-Sums. Bull. Iran. Math. Soc. 2020, 46, 519–542. [Google Scholar] [CrossRef]
- Swarttouw, R.F. The contiguous function relations for basic hypergeometric function. J. Math. Anal. Appl. 1990, 149, 151–159. [Google Scholar] [CrossRef][Green Version]
- Sahai, V.; Verma, A. Nth-order q-derivatives of Srivastava’s General Triple q-hypergeometric Series with Respect to Parameters. Kyungpook Math. J. 2016, 56, 911–925. [Google Scholar] [CrossRef]
- Sahai, V.; Verma, A. Recursion formulas for q-hypergeometric and q-Appell series. Commun. Korean Math. Soc. 2018, 33, 207–236. [Google Scholar]
- Guo, V.J.W.; Schlosser, M.J. Some q-Supercongruences from Transformation Formulas for Basic Hypergeometric Series. Constr. Approx. 2021, 53, 155–200. [Google Scholar] [CrossRef]
- Verma, A.; Sahai, V. Some recursion formulas for q-Lauricella series. Afr. Mat. 2020, 31, 643–686. [Google Scholar] [CrossRef]
- Verma, A.; Yadav, S. Recursion formulas for Srivastava’s general triple q-hypergeometric series. Afr. Mat. 2020, 31, 869–885. [Google Scholar] [CrossRef]
- Wei, C.; Gong, D. q-Extensions of Gauss fifteen contiguous relation for 2F1 series. Commun. Comput. Inf. Sci. 2011, 105, 85–92. [Google Scholar]
- Ernst, T. On the q-Analogues of Srivastava’s Triple Hypergeometric Functions. Axioms 2013, 2, 85–99. [Google Scholar] [CrossRef]
- Araci, S.; Duran, U.; Acikgoz, M. Theorems on q-Frobenius-Euler polynomials under Sym (4). Util. Math. 2016, 101, 129–137. [Google Scholar]
- Araci, S.; Acikgoz, M.; Sen, E. On the extended Kim’s q-adic q-deformed fermionic integrals in the q-adic integer ring. J. Number Theory 2013, 133, 3348–3361. [Google Scholar] [CrossRef]
- Araci, S.; Ağyuz, E.; Acikgoz, M. On a q-analog of some numbers and polynomials. J. Inequalities Appl. 2015, 19, 1–9. [Google Scholar] [CrossRef]
- Duran, U.; Acikgoz, M.; Araci, S. Symmetric identities involving weighted q-Genocchi polynomials under S4. Proc. Jangjeon Math. Soc. 2015, 18, 455–465. [Google Scholar]
- Duran, U.; Acikgoz, M.; Araci, S. Research on some new results arising from multiple q-calculus. Filomat 2018, 32, 1–9. [Google Scholar] [CrossRef]
- Pathan, M.A.; Shehata, A.; Moustafa, S.I. Certain new formulas for the Horn’s hypergeometric functions H1, H11. Acta Univ. Apulensis 2020, 64, 137–170. [Google Scholar]
- Shehata, A. On the (p,q)-Bessel functions from the view point of the generating functions method. J. Interdiscip. Math. 2020, 23, 1435–1448. [Google Scholar] [CrossRef]
- Shehata, A. On the (p,q)-Humbert functions from the view point of the generating functions method. J. Funct. Spaces 2020, 2020, 4794571. [Google Scholar] [CrossRef]
- Shehata, A. On basic Horn hypergeometric functions H3 and H4. Adv. Differ. Equ. 2020, 2020, 595. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; Volume 96. [Google Scholar]
- Jackson, F.H. Basic double hypergeometric functions (II). Q. J. Math. 1944, 15, 49–61. [Google Scholar] [CrossRef]
- Erdélyi, A.; Mangus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehata, A. On q-Horn Hypergeometric Functions H6 and H7. Axioms 2021, 10, 336. https://doi.org/10.3390/axioms10040336
Shehata A. On q-Horn Hypergeometric Functions H6 and H7. Axioms. 2021; 10(4):336. https://doi.org/10.3390/axioms10040336
Chicago/Turabian StyleShehata, Ayman. 2021. "On q-Horn Hypergeometric Functions H6 and H7" Axioms 10, no. 4: 336. https://doi.org/10.3390/axioms10040336
APA StyleShehata, A. (2021). On q-Horn Hypergeometric Functions H6 and H7. Axioms, 10(4), 336. https://doi.org/10.3390/axioms10040336
