New Sufficient Conditions for Oscillation of Second-Order Neutral Delay Differential Equations
Abstract
:1. Introduction
- (H1)
- is a quotient of odd positive integers;
- (H2)
- and
- (H2)
- and is not congruently zero for ;
- (H3)
- is non-decreasing and ;
- (H4)
- and .
2. Main Results
- (a)
- (b)
- (c)
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El’sgol’c, L.E. Qualitative Methods in Mathematical Analysis; American Mathematical Society: Providence, RI, USA, 1964. [Google Scholar]
- El’sgol’ts, L.E.; Norkin, S.B. Introduction to the Theory andApplication of Differential Equations with Deviating Arguments; Academic Press, Inc.: London, UK, 1973. [Google Scholar]
- Gyri, I.; Ladas, G. Oscillation Theory of Delay Differential Equations; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Erbe, L.H.; Kong, Q.; Zhang, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Hale, J.K. Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Grammatikopoulos, M.K.; Ladas, G.; Meimaridou, A. Oscillation of second order neutral delay differential equation. Rad. Math. 1985, 1, 267–274. [Google Scholar]
- Grace, S.R.; Lalli, B.S. Oscillation of nonlinear second order neutral delay differential equations. Rad. Math. 1987, 3, 77–84. [Google Scholar]
- Han, Z.; Li, T.; Sun, S.; Chen, W. On the oscillation of second-order neutral delay differential equations. Adv. Differ. Equ. 2010, 2010, 1–8. [Google Scholar] [CrossRef]
- Liu, H.; Meng, F.; Liu, P. Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Appl. Math. Comput. 2012, 219, 2739–2748. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y.; Zhang, J.; Xiao, J. Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type. Appl. Math. Comput. 2012, 219, 2739–2748. [Google Scholar] [CrossRef] [Green Version]
- Baculiková, B.; Dźurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107–172. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A note on oscillation of second-order delay differential equa tions. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Bohner, S.R.; Grace, I.; Jadlovska, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden–Fowler neutral differential equation. J. Ineq. Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Moaaz, O.; Anis, M.; Baleanu, D.; Muhib, A. More effective criteria for oscillation of second-order differential equations with neutral arguments. Mathematics 2020, 8, 986. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Math. Comput. 2013, 225, 787–794. [Google Scholar] [CrossRef]
- Baculìková, B.; Džurina, J. Oscillation theorems for higher order neutral differential equations. Appl. Math. Comput. 2012, 219, 3769–3778. [Google Scholar] [CrossRef]
- Li, T.; Han, Z.; Zhao, P.; Sun, S. Oscillation of even-order neutral delay differential equations. Adv. Differ. Equ. 2010, 2010, 1–9. [Google Scholar] [CrossRef]
- Thandapani, E.; Li, T. On the oscillation of third-order quasi-linear neutral functional differential equations. Arch. Math. 2011, 47, 181–199. [Google Scholar]
- Ye, L.; Xu, Z. Oscillation criteria for second order quasilinear neutral delay differential equations. Appl. Math. Comput. 2009, 207, 388–396. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, T.S.; Moaaz, O.; Nabih, A.; Mesmouli, M.B.; El-Sayed, A.M.A. New Sufficient Conditions for Oscillation of Second-Order Neutral Delay Differential Equations. Axioms 2021, 10, 281. https://doi.org/10.3390/axioms10040281
Hassan TS, Moaaz O, Nabih A, Mesmouli MB, El-Sayed AMA. New Sufficient Conditions for Oscillation of Second-Order Neutral Delay Differential Equations. Axioms. 2021; 10(4):281. https://doi.org/10.3390/axioms10040281
Chicago/Turabian StyleHassan, Taher S., Osama Moaaz, Amany Nabih, Mouataz Billah Mesmouli, and Ahmed M. A. El-Sayed. 2021. "New Sufficient Conditions for Oscillation of Second-Order Neutral Delay Differential Equations" Axioms 10, no. 4: 281. https://doi.org/10.3390/axioms10040281
APA StyleHassan, T. S., Moaaz, O., Nabih, A., Mesmouli, M. B., & El-Sayed, A. M. A. (2021). New Sufficient Conditions for Oscillation of Second-Order Neutral Delay Differential Equations. Axioms, 10(4), 281. https://doi.org/10.3390/axioms10040281