Near-Common Fixed Point Result in Cone Interval b-Metric Spaces over Banach Algebras
Abstract
:1. Introduction and Preliminaries
- i
- To generalize the contraction condition of Banach,
- ii
- Replacing complete metric space with some generalized metric space.
- The distributive law for scalar addition does not hold in general; that is to say,
- For positive scalar addition, the distributive law is true; that is,
- For negative scalar addition, the distributive law is valid; that is,
- For any , we have
- We write if and only if there exists such that
- i.
- if and only if for all ;
- ii.
- for all ;
- iii.
- for all .
- iv.
- for any and , the following holds true:
- ;
- ;
- .
- i
- for any and ;
- ii
- for any ;
- iii
- implies .
- i
- Given the normed interval space such that satisfies the null equality. For any , if , then .
- ii
- Given the normed interval space . For any , implies .
- i
- A sequence in I is said to be convergent to if
- ii
- If the sequence in I converges to some , then the equivalence class is called the class limit of , that is,
- iii
- A sequence is Cauchy sequence if, for any , there exists such that
- iv
- If I is complete, then it is also called a Banach interval space.
- (𝔞1).
- ;
- (𝔞2).
- and ;
- (𝔞3).
- ;
- (𝔞4).
- .
- (𝔨1).
- .
- (𝔨2).
- .
- (𝔟1).
- ;
- (𝔟2).
- ;
- (𝔟3).
- for all ;
- (𝔟4).
- ;
- (𝔟5).
- .
- (𝔠1).
- for all , and if and only if ,
- (𝔠2).
- for all , ,
- (𝔠3).
- for all , .
- (e1).
- for all , and if and only if ,
- (e2).
- for all , ,
- (e3).
- there is , and for all , .
- (𝔩1).
- If , and , then .
- (𝔩2).
- If , and , then .
- (𝔩3).
- For any , with and .
- (𝔫1).
- If and , then .
- (𝔫2).
- If and for , then .
2. Results and Discussion
- i.
- for all with and if and only if ;
- ii.
- for all ;
- iii.
- for all .
- iv.
- for any and , the following equalities are satisfied:
- ;
- ;
- .
- (i)
- Assume that , then we have . As . Therefore, if , then . However, by definition , therefore, , that is, for .Suppose thatAs , but , therefore, we must have and so we have , which implies that . Now we have that
- (ii)
- We have
- (iii)
- We have
- (iv)
- Furthermore, d satisfies the null equality, that is, for any and , i.e., , we have
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, L.G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 2007, 332, 1468–1476. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, S.; Hamlbarani, R. Some notes on the paper “Cone metric spaces and fixed point theorems of contractive mappings”. J. Math. Anal. Appl. 2008, 345, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Aranđelović, I.D.; Kečkić, D.J. TVS-cone metric spaces as a special case of metric spaces. arXiv 2012, arXiv:1202.5930. [Google Scholar]
- Çakallı, H.; Sönmez, A.; Genç, Ç. On an equivalence of topological vector space valued cone metric spaces and metric spaces. Appl. Math. Lett. 2012, 25, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Du, W.S. A note on cone metric fixed point theory and its equivalence. Nonlinear Anal. Theory Methods Appl. 2010, 72, 2259–2261. [Google Scholar] [CrossRef]
- Liu, H.; Xu, S. Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings. Fixed Point Theory Appl. 2013, 2013, 320. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.C. A new concept of fixed point in metric and normed interval spaces. Mathematics 2018, 6, 219. [Google Scholar] [CrossRef] [Green Version]
- Hardy, G.E.; Rogers, T. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
- Reich, S. Fixed point theorem. Acts Natl. Acad. Lincei-Acc.-Cl.-Phys.-Math. Nat. Sci. 1971, 51, 26. [Google Scholar]
- Islam, Z.; Sarwar, M.; de la Sen, M. Fixed-Point Results for Generalized α-Admissible Hardy-Rogers’ Contractions in Cone b2-Metric Spaces over Banach’s Algebras with Application. Adv. Math. Phys. 2020. [Google Scholar] [CrossRef]
- Mitrovic, Z.D.; Hussain, N. On results of Hardy-Rogers and Reich in cone b-metric space over Banach algebra and applications. UPB Sci. Bull. Ser. A 2019, 81, 147–154. [Google Scholar]
- Rangamma, M.; Murthy, P.R.B. Hardy and Rogers type Contractive condition and common fixed point theorem in Cone 2-metric space for a family of self-maps. Glob. J. Pure Appl. Math. 2016, 12, 2375–2383. [Google Scholar]
- Rudin, W. Functional analysis 2nd ed. Int. Ser. Pure Appl. Math. 1991, 45, 1.10–1.11. [Google Scholar]
- Huang, H.; Radenovic, S. Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications. J. Nonlinear Sci. Appl. 2015, 8, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Radenović, S. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality. Fixed Point Theory Appl. 2014, 2014, 102. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Radenović, S. Some fixed point results of generalized Lipschitz mappings on cone b-metric spaces over Banach algebras. J. Comput. Anal. Appl. 2016, 20, 566–583. [Google Scholar]
- Huang, H.; Deng, G.; Radenović, S. Some topological properties and fixed point results in cone metric spaces over Banach algebras. Positivity 2019, 23, 21–34. [Google Scholar] [CrossRef]
- Huang, H.; Radenovic, S. Common fixed point theorems of generalized Lipschitz mappings in cone metric spaces over Banach algebras. Appl. Math. Inf. Sci. 2015, 9, 2983. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Balasubramanian, S.; Pavlović, M. A generalized Banach fixed point theorem. Bull. Malays. Math. Sci. Soc. 2016, 39, 1529–1539. [Google Scholar] [CrossRef]
- Janković, S.; Kadelburg, Z.; Radenović, S. On cone metric spaces: A survey. Nonlinear Anal. Theory Methods Appl. 2011, 74, 2591–2601. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarwar, M.; Islam, Z.; Ahmad, H.; Işık, H.; Noeiaghdam, S. Near-Common Fixed Point Result in Cone Interval b-Metric Spaces over Banach Algebras. Axioms 2021, 10, 251. https://doi.org/10.3390/axioms10040251
Sarwar M, Islam Z, Ahmad H, Işık H, Noeiaghdam S. Near-Common Fixed Point Result in Cone Interval b-Metric Spaces over Banach Algebras. Axioms. 2021; 10(4):251. https://doi.org/10.3390/axioms10040251
Chicago/Turabian StyleSarwar, Muhammad, Ziaul Islam, Hijaz Ahmad, Hüseyin Işık, and Samad Noeiaghdam. 2021. "Near-Common Fixed Point Result in Cone Interval b-Metric Spaces over Banach Algebras" Axioms 10, no. 4: 251. https://doi.org/10.3390/axioms10040251
APA StyleSarwar, M., Islam, Z., Ahmad, H., Işık, H., & Noeiaghdam, S. (2021). Near-Common Fixed Point Result in Cone Interval b-Metric Spaces over Banach Algebras. Axioms, 10(4), 251. https://doi.org/10.3390/axioms10040251