Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
2. Preliminaries
3. Main Results
- there exist constants ,and
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- VLakshmikantham; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cottenham, UK, 2009. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: NewYork, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields, and Media; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Uchaikin, V.; Sibatov, R. Fractional Kinetics in Space: Anomalous Transport Models; World Scientific: Singapore, 2018. [Google Scholar]
- Ding, Y.; Wang, Z.; Ye, H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control. Syst. Technol. 2012, 20, 763–769. [Google Scholar] [CrossRef]
- Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D. LMI-based stabilization of a class of fractional-order chaotic systems. Nonlinear Dynam. 2013, 72, 301–309. [Google Scholar] [CrossRef]
- Zhang, F.; Li, G.C.C.; Kurths, J. Chaos synchronization in fractional differential systems. Phys. Eng. Sci. 2013, 371, 20120155. [Google Scholar] [CrossRef] [PubMed]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton–zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Carvalho, A.; Pinto, C.M.A. A delay fractional order model for the co-infection of malaria and HIV/AIDS. Int. J. Dyn. Control 2017, 5, 168–186. [Google Scholar] [CrossRef]
- Torvik, P.J.; Bagley, R.L. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 1984, 51, 294–298. [Google Scholar] [CrossRef]
- Mainardi, F. Some basic problems in continuum and statistical mechanics. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 291–348. [Google Scholar]
- Yin, C.; Liu, F.; Anh, V. Numerical simulation of the nonlinear fractional dynamical systems with fractional damping for the extensible and inextensible pendulum. J. Algorithm Comput. Technol. 2007, 1, 427–447. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K. Existence and uniqueness of solutions for Caputo-Hadamard sequential fractional order neutral functional differential equations. Electron. J. Differ. Equ. 2017, 36, 1–11. [Google Scholar]
- Promsakon, C.; Phuangthong, N.; Ntouyas, S.K.; Tariboon, J. Nonlinear sequential Riemann–Liouville and Caputo fractional differential equations with generalized fractional integral conditions. Adv. Differ. Equ. 2018, 2018, 385. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Cuntavepanit, A.; Ntouyas, S.K.; Nithiarayaphaks, W. Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations. J. Funct. Spaces 2018, 2018, 6974046. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Phuangthong, N.; Ntouyas, S.K.; Tariboon, J. Nonlinear sequential Riemann–Liouville and Caputo fractional differential equations with nonlocal and integral boundary conditions. Int. J. Anal. Appl. 2019, 17, 47–63. [Google Scholar]
- Asawasamrit, S.; Ntouyas, S.K.; Tariboon, J.; Nithiarayaphaks, W. Coupled systems of sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions. Symmetry 2018, 10, 701. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Agarwal, R.P.; Alsaedi, A.; Ntouyas, S.K.; Alruwaily, Y. Fractional order coupled systems for mixed fractional derivatives with nonlocal multi-point and Riemann-Stieltjes integral-multi-strip conditions. Dynam. Syst. Appl. 2020, 29, 71–86. [Google Scholar]
- Henderson, J.; Luca, R.; Tudorache, A. On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 2015, 18, 361–386. [Google Scholar] [CrossRef]
- Wang, J.R.; Zhang, Y. Analysis of fractional order differential coupled systems. Math. Methods Appl. Sci. 2015, 38, 3322–3338. [Google Scholar] [CrossRef]
- Ahmad, B.; Luca, R. Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions. Chaos Solitons Fractals 2017, 104, 378–388. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Ahmad, B.; Alsaedi, A. Existence results for sequential Riemann–Liouville and Caputo fractional differential inclusions with generalized fractional integral conditions. Mathematics 2020, 8, 1044. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef] [Green Version]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiataramkul, C.; Yukunthorn, W.; Ntouyas, S.K.; Tariboon, J. Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions. Axioms 2021, 10, 174. https://doi.org/10.3390/axioms10030174
Kiataramkul C, Yukunthorn W, Ntouyas SK, Tariboon J. Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions. Axioms. 2021; 10(3):174. https://doi.org/10.3390/axioms10030174
Chicago/Turabian StyleKiataramkul, Chanakarn, Weera Yukunthorn, Sotiris K. Ntouyas, and Jessada Tariboon. 2021. "Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions" Axioms 10, no. 3: 174. https://doi.org/10.3390/axioms10030174
APA StyleKiataramkul, C., Yukunthorn, W., Ntouyas, S. K., & Tariboon, J. (2021). Sequential Riemann–Liouville and Hadamard–Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions. Axioms, 10(3), 174. https://doi.org/10.3390/axioms10030174