Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function
Abstract
:1. Introduction and Preliminaries
2. Main Results
3. Special Cases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampe´ de Fe´riet’s double hypergeometric series. Math. Nachr. 1985, 53, 151–159. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Exton, H. A generalization of the Weber–Schafheitlin integral. J. Reine Angew. Math. 1979, 309, 1–6. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Oberhettinger, F. Tables of Mellin Transforms; Springer: New York, NY, USA, 1974. [Google Scholar]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). CR Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Mittag-Leffler, G.M. Sopra la funzione Eα(x). Rend. Della R. Accad. Lincei Ser. V 1904, 13, 3–5. [Google Scholar]
- Wiman, A. Über den Fundamental satz in der Theorie der Funcktionen, Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die Nullstellun der Funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Agarwal, R.P. A propos d’une note de M. Pierre Humbert. CR Acad. Sci. Paris 1953, 236, 2031–2032. [Google Scholar]
- Humbert, P. Quelques resultants retifs a la fonction de Mittag-Leffler. CR Acad. Sci. Paris 1953, 236, 1467–1468. [Google Scholar]
- Humbert, P.; Agarwal, R.P. Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bull. Sci. Math. Ser. II 1953, 77, 180–185. [Google Scholar]
- Choi, J.; Agarwal, P. Certain unified integrals involving a product of Bessel functions of the first kind. Honam Math. J. 2013, 35, 667–677. [Google Scholar] [CrossRef]
- Milovanović, G.V.; Rassias, M.T. Analytic Number Theory, Approximation Theory, and Special Functions; Springer: New York, NY, USA, 2014. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: New York, NY, USA, 2020. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Saxena, R.K.; Kalla, S.L. Solutions of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels. Int. J. Math. Math. Sci. 2005, 8, 1155–1170. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.M. The asypmtotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 287–293. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman: Harlow, UK; Wiley: New York, NY, USA, 1994. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, S.; Agarwal, R.P.; Agarwal, P.; Singh, P. Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms 2021, 10, 81. https://doi.org/10.3390/axioms10020081
Jain S, Agarwal RP, Agarwal P, Singh P. Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms. 2021; 10(2):81. https://doi.org/10.3390/axioms10020081
Chicago/Turabian StyleJain, Shilpi, Ravi P. Agarwal, Praveen Agarwal, and Prakash Singh. 2021. "Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function" Axioms 10, no. 2: 81. https://doi.org/10.3390/axioms10020081
APA StyleJain, S., Agarwal, R. P., Agarwal, P., & Singh, P. (2021). Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms, 10(2), 81. https://doi.org/10.3390/axioms10020081