Next Article in Journal
Regularization of the Ill-Posed Cauchy Problem for Matrix Factorizations of the Helmholtz Equation on the Plane
Next Article in Special Issue
An Extension of Beta Function by Using Wiman’s Function
Previous Article in Journal
Dynamics of Systems with a Discontinuous Hysteresis Operator and Interval Translation Maps
Previous Article in Special Issue
Singular Integral Neumann Boundary Conditions for Semilinear Elliptic PDEs
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function

1
Department of Mathematics, Poornima College of Engineering, Jaipur 302022, India
2
Department of Mathematics, Texas A&M University, Kingsville, TX 78363, USA
3
Department of Mathematics, Anand International College of Engineering, Jaipur 303012, India
4
Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman 346, United Arab Emirates
5
Department of Mathematics, Research Scholar, Poornima University, Jaipur 302022, India
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2021, 10(2), 81; https://doi.org/10.3390/axioms10020081
Submission received: 23 March 2021 / Revised: 18 April 2021 / Accepted: 23 April 2021 / Published: 2 May 2021
(This article belongs to the Special Issue Special Functions Associated with Fractional Calculus)

Abstract

:
A remarkably large number of unified integrals involving the Mittag–Leffler function have been presented. Here, with the same technique as Choi and Agarwal, we propose the establishment of two generalized integral formulas involving a multivariate generalized Mittag–Leffler function, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust. We also present some interesting special cases.

1. Introduction and Preliminaries

The generalized Lauricella series (see, for example, Refs. [1] (p. 454) and [2] (p. 37)) is defined as follows:
F C : D ( 1 ) ; ; D ( n ) A : B ( 1 ) ; ; B ( n ) z 1 z n = F C : D ( 1 ) ; ; D ( n ) A : B ( 1 ) ; ; B ( n ) ( [ ( a ) : θ ( 1 ) , , θ ( n ) ] : [ ( c ) : ψ ( 1 ) , , ψ ( n ) ] : [ ( b ) ( 1 ) : ϕ ( 1 ) ] ; ; [ ( b ) ( n ) : ϕ ( n ) ] ; [ ( d ) ( 1 ) : δ ( 1 ) ] ; ; [ ( d ) ( n ) : δ ( n ) ] ; z 1 , , z n ) = k 1 , , k n = 0 Ω ( k 1 , , k n ) z 1 k 1 k 1 ! z n k n k n ! ,
where, for convenience,
Ω ( k 1 , , k n ) = j = 1 A ( a j ) k 1 θ j ( 1 ) + + k n θ j ( n ) j = 1 B ( 1 ) ( b j ( 1 ) ) k 1 ϕ j ( 1 ) j = 1 B ( n ) ( b j ( n ) ) k n ϕ j ( n ) j = 1 C ( c j ) k 1 ψ j ( 1 ) + + k n ψ j ( n ) j = 1 D ( 1 ) ( d j ( 1 ) ) k 1 δ j ( 1 ) j = 1 D ( n ) ( d j ( n ) ) k n δ j ( n ) ,
the coefficients
θ j ( m ) ( j = 1 , , A ) ; ϕ j ( m ) ( j = 1 , , B ( m ) ) ; ψ j ( m ) ( j = 1 , , C ) ; δ j ( m ) ( j = 1 , , D ( m ) ) ; m { 1 , , n } ,
are real and positive, ( a ) abbreviates the array of A parameters a 1 , , a A , and ( b ( m ) ) abbreviates the array of B ( m ) parameters
b j ( m ) ( j = 1 , , B ( m ) ) ; m { 1 , , n } ,
with similar interpretations for ( c ) and ( d ( m ) ) ( m = 1 , , n ) .
The interested reader may refer to papers on the subject for more details [1,2].
The familiar generalized hypergeometric series p F q is defined as (Ref. [3], Section 1.5)
p F q γ 1 , , γ p ; β 1 , , β q ; z = n = 0 ( γ 1 ) n ( γ p ) n ( β 1 ) n ( β q ) n z n n ! = p F q ( γ 1 , , γ p ; β 1 , , β q ; z ) ,
where ( γ ) n is defined as the Pochhammer symbol (for γ C ) and it is denoted by [3] (pp. 2, 4–6)
( γ ) n : = 1 ( n = 0 ) γ ( γ + 1 ) ( γ + n 1 ) ( n N : = { 1 , 2 , 3 , } ) = Γ ( γ + n ) Γ ( γ ) ( γ C Z 0 ) ,
and Z 0 denotes the set of nonpositive integers.
Furthermore, Oberhettinger’s integral formula [4]
0 x μ 1 x + b + x 2 + 2 b x η d x = 2 λ b η b 2 μ Γ ( 2 μ ) Γ ( η μ ) Γ ( 1 + η + μ ) ,
provided 0 < ( μ ) < ( η ) .
The well-known Mittag–Leffler function and its generalization were introduced and studied by Mittag–Leffler [5,6], Wiman [7,8], Agarwal [9], Humbert [10], Humbert and Agarwal [11] and other authors [12,13,14,15].
Motivated by above works here, with the same technique as Choi and Agarwal [12], we propose the establishment of two generalized integral formulas involving a multivariate generalized Mittag–Leffler function, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust [1] given in Equation (1).
In a recent paper, Saxena and Kalla [16] introduced a more generalized Mittag–Leffler function as
E ( ρ j ) , η γ j ( z 1 , . , z m ) E ( ρ 1 , . . , ρ m ) , η ( γ 1 , . , γ m ) ( z 1 , . z m ) = k 1 , . , k m = 0 ( γ 1 ) k 1 ( γ m ) k m z 1 k 1 . . z m k m Γ ( η + ρ 1 k 1 + . + ρ m k m ) ( k 1 ) ! . . ( k m ) ! ,
where η , γ j , ρ j , z j C , ( ρ j ) > 0 , j = 1 , , m .
Equation (7) is a generalization of well-known results.
On setting m = 1 , Equation (7) reduces to the Mittag–Leffler function defined by Prabhakar [15]):
E ρ , η γ ( z ) = k = 0 ( γ ) k z k Γ ( k ρ + η ) k ! ,
where ρ , η , γ , z C , ( ρ ) > 0 , ( η ) > 0 and ( η ) n .
On setting γ = 1 , Equation (8) reduces to the Mittag–Leffler function defined by Wiman [8]:
E ρ , η ( z ) = k = 0 z k Γ ( k ρ + η ) k ! ,
where ρ , η , z C , ( ρ ) > 0 , ( η ) > 0 ,
On setting η = 1 , Equation (9) reduces to the Mittag–Leffler function defined by [5,6]
E ρ ( z ) = k = 0 z k Γ ( k ρ + 1 ) k ! ,
where ρ C , ( ρ ) > 0 , z C .
We also require the generalized hypergeometric function p ψ q [ z ] (see [17,18]) defined by
p ψ q [ z ] = k = 0 i = 1 p Γ ( a i + α i k ) j = 1 q Γ ( b j + β j k ) z k k !
provided that p , q N 0 = N { 0 } ; a i , b j C ; α i , β j R ; α i , β j 0 ; i = 1 , . p ; j = 1 , , q .

2. Main Results

We establish two generalized integral formulas, which are expressed in terms of the generalized Lauricella functions (1), by inserting a generalized Mittag–Leffler function (7) with suitable arguments into the integrand of (6).
Theorem 1.
The following integral formula holds true: For η , μ , z j C and x > 0 , where j = 1 , , m
0 x μ 1 x + b + x 2 + 2 b x η E ( ρ j ) , η ( γ j ) z j x + b + x 2 + 2 b x d x   = 2 1 μ b μ η Γ ( 1 + η ) Γ ( η μ ) ( Γ ( η ) ) 2 Γ ( 1 + η + μ )     · F 3 : 0 ; ; 0 2 : 1 ; ; 1 [ 1 + η : 1 , , 1 , η μ : 1 , , 1 ,     : η : 1 , , 1 , 1 + η + μ : 1 , , 1 , η : ρ 1 , , ρ m : [ γ 1 : 1 ]   ; ; [ γ m ; 1 ]   ; ; ; ; z 1 b , , z m b ] ,    
where 0 < ( μ ) < ( η ) .
Theorem 2.
The following integral formula holds true: For η , μ , z j C and x > 0 , where j = 1 , , m
0 x μ 1 x + b + x 2 + 2 b x η E ( ρ j ) , η ( γ j ) x z j x + b + x 2 + 2 b x d x   = 2 1 μ a μ η Γ ( η μ ) Γ ( 1 + η ) ( Γ ( η ) ) 2 Γ ( 1 + η + μ )     · F 3 : 0 ; ; 0 2 : 1 ; ; 1 [ 1 + η : 1 , , 1 , 2 μ : 2 , , 2 ,     : η : 1 , , 1 , 1 + η + μ : 2 , , 2 , η : ρ 1 , , ρ m : [ γ 1 : 1 ]   ; ; [ γ m ; 1 ]   ; ; ; ; z 1 2 , , z m 2 ] ,    
where 0 < ( μ ) < ( η ) .
Proof. 
For convenience, let the left-hand side of the assertion (12) be denoted by I . By applying (7) to the integrand of (12), we obtain
I = 0 x μ 1 x + b + x 2 + 2 b x η · k 1 , , k m = 0 ( γ 1 ) k 1 ( γ m ) k m Γ ( η + ρ 1 k 1 + . + ρ m k m ) z 1 x + b + x 2 + 2 b x k 1 1 k 1 ! z m x + b + x 2 + 2 b x k m 1 k m ! d x
Then, interchanging the order of integration and summation,
I = k 1 , , k m = 0 ( γ 1 ) k 1 ( γ m ) k m Γ ( η + ρ 1 k 1 + . + ρ m k m ) z 1 k 1 k 1 ! z m k m k m ! 0 x μ 1 x + b + x 2 + 2 b x ( η + k 1 + k m ) d x ,
we can apply the integral formula (6) to the integral in (14) and obtain the following expression:
I = k 1 , , k m = 0 ( γ 1 ) k 1 ( γ m ) k m Γ ( η + ρ 1 k 1 + . + ρ m k m ) 2 ( η + k 1 + + k m ) b ( η + k 1 + . + k m ) b 2 ( μ ) Γ ( 2 μ ) Γ ( η + k 1 + . + k m μ ) Γ ( 1 + η + μ + k 1 + + k m ) ( z 1 ) k 1 k 1 ! . ( z m ) k m k m ! .
Now, arranging the constant term and using η + k 1 + + k m = Γ ( η + k 1 + + k m + 1 ) Γ ( η + k 1 + + k m ) , we obtain
I = 2 1 μ b μ η Γ ( 2 μ ) k 1 , , k m = 0 ( γ 1 ) k 1 ( γ m ) k m Γ ( η + ρ 1 k 1 + . + ρ m k m ) Γ ( η + k 1 + + k m + 1 ) Γ ( η + k 1 + + k m ) Γ ( η + k 1 + + k m μ ) Γ ( 1 + η + μ + k 1 + + k m ) z 1 b k 1 1 k 1 ! z m b k m 1 k m ! .
The above equation can be multiplied and devided with Γ ( η + 1 ) , ( Γ ( η ) ) 2 , Γ ( η μ ) , Γ ( 1 + η + μ )
Now, using the properties of the Gamma function as ( 1 + η ) k 1 + + k m = Γ ( 1 + η + k 1 + + k m ) Γ ( 1 + η ) , we find that
I = 2 1 μ b μ η Γ ( 2 μ ) Γ ( 1 + η ) Γ ( η ) 1 Γ ( η ) Γ ( η μ ) Γ ( 1 + η + μ · k 1 , , k m = 0 ( 1 + η ) k 1 + + k m ( η μ ) k 1 + + k m ( η ) k 1 + + k m ( 1 + η + μ ) k 1 + + k m · ( γ ) k 1 ( γ ) k m ( η ) ρ 1 k 1 + + ρ m k m ( z 1 / b ) k 1 k 1 ! ( z m / b ) k m k m ! .
Finally, we interpret the multiple series in (15) as a special case of the general hypergeometric series in several variables defined by (1). Thus, we are led to the assertion (12). The assertion (13) of the Theorem 2.2 can be proved by a similar argument. □

3. Special Cases

In this section, we derive certain new integral formulas involving Prabhakar-type Mittag–Leffler functions [15] in the integrands of (12) and (13), respectively.
By setting m = 1 in (12) and (13) and applying the expression in (1) to the identities, we obtain two integral formulas, as stated in Corollary 1 and 2, respectively.
Corollary 1.
0 x μ 1 x + b + x 2 + 2 b x η · E ρ , η γ z x + b + x 2 + 2 b x d x = Γ ( 2 μ ) Γ ( γ ) 2 ( 1 μ ) a ( μ η ) 3 ψ 3 [ ( γ , 1 ) , ( η μ , 1 ) , ( η + 1 , 1 ) ; ( η , ρ ) , ( 1 + η + μ , 1 ) , ( η , 1 ) ; , z / b ]
with the convergence conditions followed by Theorem 1.
Corollary 2.
0 x μ 1 x + b + x 2 + 2 b x η · E ρ , η γ x z x + b + x 2 + 2 b x d x = Γ ( η μ ) Γ ( γ ) 2 ( 1 μ ) b ( μ η ) 3 ψ 3 [ ( γ , 1 ) , ( γ + 1 , 1 ) , ( 2 μ , 2 ) ; ( η , ρ ) , ( 1 + η + μ , 2 ) , ( η , 1 ) ; z / 2 ] ,
with the convergence conditions followed by Theorem 2.
It is easily seen that, if we set γ = 1 in (16) and (17), we obtain new integral formulas, as stated in Corollary 3 and 4, respectively.
Corollary 3.
0 x μ 1 x + b + x 2 + 2 b x η · E ρ , η z x + b + x 2 + 2 b x d x = 2 ( μ 1 ) b ( μ η ) Γ ( 2 μ ) 2 ψ 3 [ ( η μ , 1 ) , ( η + 1 , 1 ) ; ( η , ρ ) , ( 1 + η + μ , 1 ) , ( η , 1 ) ; z / b ] ,
with the convergence conditions followed by Theorem 1.
Corollary 4.
0 x μ 1 x + b + x 2 + 2 b x η · E ρ , η x z x + b + x 2 + 2 b x d x = 2 ( μ 1 ) b ( μ η ) Γ ( η μ ) 2 ψ 3 [ ( η + 1 , 1 ) , ( η + 1 , 1 ) ; ( η , ρ ) , ( 1 + η + μ , 2 ) , ( η , 1 ) ; z / 2 ] ,
with the convergence conditions followed by Theorem 2.

4. Conclusions

We conclude our investigation by remarking that the results presented here can be easily converted in terms of the known and new integral formulas after small changes in parameters. We are investigating the main results to find potentially useful applications in a variety of areas.

Author Contributions

Formal analysis, S.J.; funding acquisition, P.A., R.P.A. and S.J.; investigation, S.J., P.S. and P.A.; methodology, S.J., P.S. and P.A.; project administration, R.P.A., S.J. and P.A.; resources, S.J.; supervision, P.A.; Writing—original draft, S.J. and P.S.; Writing—review and editing, R.P.A. and P.A. All authors have read and agreed to the published version of the manuscript.

Funding

S.J. is very thankful to the funding agency SERB (project number: MTR/2017/000194) for providing necessary financial support for the present study.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the anonymous referees for their careful reading of this manuscript and also for their constructive suggestions which considerably improved the article. S.J. very thankful to SERB (project number: MTR/2017/000194) for providing necessary facility.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampe´ de Fe´riet’s double hypergeometric series. Math. Nachr. 1985, 53, 151–159. [Google Scholar] [CrossRef]
  2. Srivastava, H.M.; Exton, H. A generalization of the Weber–Schafheitlin integral. J. Reine Angew. Math. 1979, 309, 1–6. [Google Scholar]
  3. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
  4. Oberhettinger, F. Tables of Mellin Transforms; Springer: New York, NY, USA, 1974. [Google Scholar]
  5. Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). CR Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
  6. Mittag-Leffler, G.M. Sopra la funzione Eα(x). Rend. Della R. Accad. Lincei Ser. V 1904, 13, 3–5. [Google Scholar]
  7. Wiman, A. Über den Fundamental satz in der Theorie der Funcktionen, Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
  8. Wiman, A. Über die Nullstellun der Funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
  9. Agarwal, R.P. A propos d’une note de M. Pierre Humbert. CR Acad. Sci. Paris 1953, 236, 2031–2032. [Google Scholar]
  10. Humbert, P. Quelques resultants retifs a la fonction de Mittag-Leffler. CR Acad. Sci. Paris 1953, 236, 1467–1468. [Google Scholar]
  11. Humbert, P.; Agarwal, R.P. Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bull. Sci. Math. Ser. II 1953, 77, 180–185. [Google Scholar]
  12. Choi, J.; Agarwal, P. Certain unified integrals involving a product of Bessel functions of the first kind. Honam Math. J. 2013, 35, 667–677. [Google Scholar] [CrossRef]
  13. Milovanović, G.V.; Rassias, M.T. Analytic Number Theory, Approximation Theory, and Special Functions; Springer: New York, NY, USA, 2014. [Google Scholar]
  14. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: New York, NY, USA, 2020. [Google Scholar]
  15. Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
  16. Saxena, R.K.; Kalla, S.L. Solutions of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels. Int. J. Math. Math. Sci. 2005, 8, 1155–1170. [Google Scholar] [CrossRef] [Green Version]
  17. Wright, E.M. The asypmtotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 287–293. [Google Scholar]
  18. Kiryakova, V. Generalized Fractional Calculus and Applications; Longman: Harlow, UK; Wiley: New York, NY, USA, 1994. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Jain, S.; Agarwal, R.P.; Agarwal, P.; Singh, P. Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms 2021, 10, 81. https://doi.org/10.3390/axioms10020081

AMA Style

Jain S, Agarwal RP, Agarwal P, Singh P. Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms. 2021; 10(2):81. https://doi.org/10.3390/axioms10020081

Chicago/Turabian Style

Jain, Shilpi, Ravi P. Agarwal, Praveen Agarwal, and Prakash Singh. 2021. "Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function" Axioms 10, no. 2: 81. https://doi.org/10.3390/axioms10020081

APA Style

Jain, S., Agarwal, R. P., Agarwal, P., & Singh, P. (2021). Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms, 10(2), 81. https://doi.org/10.3390/axioms10020081

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop