Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function
Abstract
1. Introduction and Preliminaries
2. Main Results
3. Special Cases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Daoust, M.C. A note on the convergence of Kampe´ de Fe´riet’s double hypergeometric series. Math. Nachr. 1985, 53, 151–159. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Exton, H. A generalization of the Weber–Schafheitlin integral. J. Reine Angew. Math. 1979, 309, 1–6. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Oberhettinger, F. Tables of Mellin Transforms; Springer: New York, NY, USA, 1974. [Google Scholar]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). CR Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Mittag-Leffler, G.M. Sopra la funzione Eα(x). Rend. Della R. Accad. Lincei Ser. V 1904, 13, 3–5. [Google Scholar]
- Wiman, A. Über den Fundamental satz in der Theorie der Funcktionen, Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wiman, A. Über die Nullstellun der Funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Agarwal, R.P. A propos d’une note de M. Pierre Humbert. CR Acad. Sci. Paris 1953, 236, 2031–2032. [Google Scholar]
- Humbert, P. Quelques resultants retifs a la fonction de Mittag-Leffler. CR Acad. Sci. Paris 1953, 236, 1467–1468. [Google Scholar]
- Humbert, P.; Agarwal, R.P. Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bull. Sci. Math. Ser. II 1953, 77, 180–185. [Google Scholar]
- Choi, J.; Agarwal, P. Certain unified integrals involving a product of Bessel functions of the first kind. Honam Math. J. 2013, 35, 667–677. [Google Scholar] [CrossRef]
- Milovanović, G.V.; Rassias, M.T. Analytic Number Theory, Approximation Theory, and Special Functions; Springer: New York, NY, USA, 2014. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: New York, NY, USA, 2020. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Saxena, R.K.; Kalla, S.L. Solutions of Volterra-type integro-differential equations with a generalized Lauricella confluent hypergeometric function in the kernels. Int. J. Math. Math. Sci. 2005, 8, 1155–1170. [Google Scholar] [CrossRef]
- Wright, E.M. The asypmtotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 287–293. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman: Harlow, UK; Wiley: New York, NY, USA, 1994. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jain, S.; Agarwal, R.P.; Agarwal, P.; Singh, P. Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms 2021, 10, 81. https://doi.org/10.3390/axioms10020081
Jain S, Agarwal RP, Agarwal P, Singh P. Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms. 2021; 10(2):81. https://doi.org/10.3390/axioms10020081
Chicago/Turabian StyleJain, Shilpi, Ravi P. Agarwal, Praveen Agarwal, and Prakash Singh. 2021. "Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function" Axioms 10, no. 2: 81. https://doi.org/10.3390/axioms10020081
APA StyleJain, S., Agarwal, R. P., Agarwal, P., & Singh, P. (2021). Certain Unified Integrals Involving a Multivariate Mittag–Leffler Function. Axioms, 10(2), 81. https://doi.org/10.3390/axioms10020081

