# Nonlocal Problem for a Third-Order Equation with Multiple Characteristics with General Boundary Conditions

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction and Formulation of the Problem

## 2. Uniqueness Theorem

**Theorem**

**1.**

**Proof.**

## 3. Existence Theorem

**Theorem**

**2.**

**Proof.**

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Faminskii, A.; Baykova, E. On Initial-Boundary Value Problems in a Strip for Generalized Two-Dimensional Zakharov-Kuznetsov Equation. 2013. Available online: https://arxiv.org/abs/1212.5896v1 (accessed on 15 January 2013).
- Del Vecchio, E. La soluzione fondamentale per z
_{xxx}− z_{y}= 0. Atti R. Ist. Veneto Shi. Lett. Arti**1916**, 65. [Google Scholar] - Cattabriga, L. Un problema al per una equazione parabolica di ordine dispari. Ann. Della Sc. Norm. Super. Pisa Cl. Sci.
**1959**, 13, 163–203. [Google Scholar] - Cattabriga, L. Potenziali di linia e di domino per equations nom paraboliche in due variabili a caracteristiche multiple. Rendi Scm. Mat. Della Univ. Padova
**1961**, 3, 1–45. [Google Scholar] - Dzhuraev, T.D. Boundary Value Problems for Third-Order Equations of Mixed-Composite Types; Tashkent. Fan.: Tashkent, Uzbekistan, 1979; 240p. [Google Scholar]
- Eleev, V.A. Boundary-value problem for a mixed parabolic-hyperbolic equation of the third order. Ukr. Math. J.
**1995**, 47, 20–31. [Google Scholar] [CrossRef] - Khashimov, A. On a problem for an equation of mixed type with multiple characteristics. Uzb. Math. J.
**1995**, 2, 95–97. [Google Scholar] - Khashimov, A.R. Some properties of the fundamental solutions of non-stationary third order composite type equation in multidimensional domains. J. Nonlinear Evol. Equ. Appl.
**2013**, 1, 1–9. [Google Scholar] - Khashimov, A.R.; Yakubov, S. The Cauchy problem for a nonstationary equation of the third order of composite type in multidimensional domains. Ufa Math. J.
**2014**, 6, 139–148. [Google Scholar] [CrossRef] - Mascarello, M.; Rodino, L. Partial Differential Equations with Multiple Characteristics; Academie Verlag (Wiley eds.): Berlin, Germany, 1997; 352p. [Google Scholar]
- Mascarello, M.; Rodino, L.; Tri, M. Partial differential operators with multiple symplectic characteristics. In Partial Differential Equations and Spectral Theory; Demuth, M., Schulze, B.-W., Eds.; Birkhduser: Basel, Switzerland, 2001; pp. 293–297. [Google Scholar]
- Rodino, L.; Oliaro, A. Solvability for semilinear PDE with multiple characteristics. In Banach Center Publications 60, Evolution Equations; Picard, R., Reissig, M., Zajaczkowski, W., Eds.; Banach Center: Warsaw, Poland, 2003; pp. 295–303. [Google Scholar]
- Abdinazarov, S.; Khashimov, A. Boundary value problems for an equation with multiple characteristics and discontinuous coefficients. Uzb. Math. J.
**1993**, 1, 3–12. [Google Scholar] - Abdinazarov, S. General boundary value problems for an equation with multiple characteristics. Differ. Equ.
**1981**, XVII, 3–12. [Google Scholar] - Dzhuraev, T.D.; Khashimov, A.R. On the existence of solutions to the first boundary value problem for third order equations of composite type in unbounded domains. Bull. Samara Tech. Univ. Phys. Math.
**2003**, 9, 5–7. [Google Scholar] - Khashimov, A.R. An analogue of Saint Venant’s principle and uniqueness of the first boundary-value problems in unbounded regions for a third order equation of combined type. Nonlinear Oscil.
**2006**, 9, 117–126. [Google Scholar] [CrossRef] - Khashimov, A.R.; Smetanova, D. On the Uniqueness Classes of Solutions of Boundary Value Problems for Third-Order Equations of the Pseudo-Elliptic Type. Axioms
**2020**, 9, 80. [Google Scholar] [CrossRef] - Khashimov, A.R. On the uniqueness of solutions to the second boundary value problem for a third-order composite equation in unbounded domains. Bull. Samara Tech. Univ. Phys. Math.
**2012**, 2, 18–25. [Google Scholar] - Kozhanov, A.I. Boundary Value Problems for Equations of Mathematical Physics of the Odd Order; Gos. Univ.: Novosibirsk, Russia, 1990; 149p. [Google Scholar]
- Balkizov, Z.A. Nonlocal Boundary-Value Problem for a Third-Order Parabolic-Hyperbolic Equation with Degeneration of Type and Order in the Hyperbolicity Domain. J. Math. Sci.
**2020**, 250, 728–739. [Google Scholar] [CrossRef] - Balkizov, Z.A. Differential equations and mathematical physics on a boundary value problem for a third-order parabolic-hyperbolic type equation with a displacement boundary condition in its hyperbolicity domain. Vestn. Samar. Gos. Tekhnicheskogo Univ. Seriya Fiz. Mat. Nauk.
**2020**, 24, 221–225. [Google Scholar] - Assanova, A.T. Unique Solvability of an Initial–Boundary Value Problem for a System of Third-Order Partial Differential Equations. Differ. Equ.
**2021**, 57, 111–116. [Google Scholar] [CrossRef] - Shanmugam, T.; Muthiah, M.; Radenović, S. Existence of Positive Solution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem. Axioms
**2019**, 8, 129. [Google Scholar] [CrossRef] [Green Version] - Fabiano, N.; Nikolić, N.; Shanmugam, T.; Radenović, S.; Čitaković, N. Tenth order boundary value problem solution existence by fixed point theorem. J. Inequal. Appl.
**2020**, 2020, 166. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Khashimov, A.R.; Smetanová, D.
Nonlocal Problem for a Third-Order Equation with Multiple Characteristics with General Boundary Conditions. *Axioms* **2021**, *10*, 110.
https://doi.org/10.3390/axioms10020110

**AMA Style**

Khashimov AR, Smetanová D.
Nonlocal Problem for a Third-Order Equation with Multiple Characteristics with General Boundary Conditions. *Axioms*. 2021; 10(2):110.
https://doi.org/10.3390/axioms10020110

**Chicago/Turabian Style**

Khashimov, Abdukomil Risbekovich, and Dana Smetanová.
2021. "Nonlocal Problem for a Third-Order Equation with Multiple Characteristics with General Boundary Conditions" *Axioms* 10, no. 2: 110.
https://doi.org/10.3390/axioms10020110