Explicit, Determinantal, and Recurrent Formulas of Generalized Eulerian Polynomials †
Abstract
:1. Introduction
2. Lemmas
3. Explicit, Determinantal, and Recurrent Formulas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barry, P. Eulerian polynomials as moments, via exponential Riordan arrays. J. Integer Seq. 2011, 14, 1–14. [Google Scholar]
- Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expansions; Revised and Enlarged Edition; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1974. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Explicit formulas and recurrence relations for higher order Eulerian polynomials. Indag. Math. 2017, 28, 884–891. [Google Scholar] [CrossRef]
- Qi, F. Diagonal recurrence relations, inequalities, and monotonicity related to the Stirling numbers of the second kind. Math. Inequal. Appl. 2016, 19, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Lim, D.; Guo, B.-N. Some identities related to Eulerian polynomials and involving the Stirling numbers. Appl. Anal. Discrete Math. 2018, 12, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Qi, F. Diagonal recurrence relations for the Stirling numbers of the first kind. Contrib. Discrete Math. 2016, 11, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Guo, B.-N. A diagonal recurrence relation for the Stirling numbers of the first kind. Appl. Anal. Discrete Math. 2018, 12, 153–165. [Google Scholar] [CrossRef] [Green Version]
- Qi, F. Determinantal expressions and recurrence relations for Fubini and Eulerian polynomials. J. Interdiscip. Math. 2019, 22, 317–335. [Google Scholar] [CrossRef]
- Xiong, T.; Tsao, H.-P.; Hall, J.I. General Eulerian numbers and Eulerian polynomials. J. Math. 2013, 2013, 629132. [Google Scholar] [CrossRef] [Green Version]
- Dağlı, M.C. Closed formulas and determinantal expressions for higher-order Bernoulli and Euler polynomials in terms of Stirling numbers. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2021, 115, 32. [Google Scholar] [CrossRef]
- Hu, S.; Kim, M.-S. Two closed forms for the Apostol–Bernoulli polynomials. Ramanujan J. 2018, 46, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Guo, B.-N. Several explicit and recursive formulas for generalized Motzkin numbers. AIMS Math. 2020, 5, 1333–1345. [Google Scholar] [CrossRef]
- Qi, F.; Niu, D.-W.; Lim, D.; Yao, Y.-H. Special values of the Bell polynomials of the second kind for some sequences and functions. J. Math. Anal. Appl. 2020, 491, 124382. [Google Scholar] [CrossRef]
- Bourbaki, N. Functions of a Real Variable, Elementary Theory; Translated from the 1976 French original by Philip Spain; Elements of Mathematics (Berlin); Springer: Berlin, Germany, 2004. [Google Scholar] [CrossRef]
- Qi, F.; Chapman, R.J. Two closed forms for the Bernoulli polynomials. J. Number Theory 2016, 159, 89–100. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. A determinantal expression and a recurrence relation for the Euler polynomials. Adv. Appl. Math. Sci. 2017, 16, 297–309. [Google Scholar]
- Qi, F.; Guo, B.-N. Explicit formulas for special values of the Bell polynomials of the second kind and for the Euler numbers and polynomials. Mediterr. J. Math. 2017, 14, 140. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. A closed form for the Stirling polynomials in terms of the Stirling numbers. Tbilisi Math. J. 2017, 10, 153–158. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Dağli, M.C.; Liu, X.-M.; Qi, F. Explicit, Determinantal, and Recurrent Formulas of Generalized Eulerian Polynomials. Axioms 2021, 10, 37. https://doi.org/10.3390/axioms10010037
Wang Y, Dağli MC, Liu X-M, Qi F. Explicit, Determinantal, and Recurrent Formulas of Generalized Eulerian Polynomials. Axioms. 2021; 10(1):37. https://doi.org/10.3390/axioms10010037
Chicago/Turabian StyleWang, Yan, Muhammet Cihat Dağli, Xi-Min Liu, and Feng Qi. 2021. "Explicit, Determinantal, and Recurrent Formulas of Generalized Eulerian Polynomials" Axioms 10, no. 1: 37. https://doi.org/10.3390/axioms10010037
APA StyleWang, Y., Dağli, M. C., Liu, X. -M., & Qi, F. (2021). Explicit, Determinantal, and Recurrent Formulas of Generalized Eulerian Polynomials. Axioms, 10(1), 37. https://doi.org/10.3390/axioms10010037