The Discovery of MVT-like Ga-Enriched Sphalerite from the Zhaojinci Area in the South Hunan District (South China)
Abstract
1. Introduction

2. Geological Setting
2.1. Regional Geology
2.2. The Zhaojinci Area
3. Sampling and Analytical Methods
3.1. Samples
3.2. SEM-BSE Imaging
3.3. EPMA Spot Analysis and Elemental Mapping of Sphalerite
3.4. LA-ICP-MS Trace Element Analyses of Sphalerite
4. Results
4.1. Internal Texture of Sphalerite
4.2. Major Element Geochemistry of Sphalerite
4.3. Trace Element Geochemistry of Sphalerite
5. Discussion
5.1. Gallium Occurrence in the Zhaojinci Sphalerite
5.2. Enrichment Mechanisms of Gallium in Sphalerite
5.3. Implications for Ore Origin and Mineral Prospecting

6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moskalyk, R.R. Gallium: The backbone of the electronic industry. Miner. Eng. 2003, 16, 921–929. [Google Scholar] [CrossRef]
- Paradis, S. Indium, germanium and gallium in volcanic- and sediment-hosted base-metal sulphide deposits. In Proceedings of the Symposium on Strategic and Critical Materials Proceedings, Victoria, BC, Canada, 13–14 November 2015; British Columbia Geological Survey Paper; Simandl, G.J., Neetz, M., Eds.; British Columbia Ministry of Energy and Mines: Victoria, BC, Canada, 2015; pp. 23–29. [Google Scholar]
- Foley, N.; Jaskula, B.; Kimball, B.; Schulte, F. Gallium. In Critical Mineral Resources of the United States: Economic and Environmental Geology and Prospects for Future Supply; U.S. Geological Survey: Reston, VA, USA, 2017; pp. 1–26. [Google Scholar]
- Benites, D.; Torró, L.; Vallance, J.; Laurent, O.; Valverde, P.E.; Kouzmanov, K.; Chelle-Michou, C.; Fontboté, L. Distribution of indium, germanium, gallium and other minor and trace elements in polymetallic ores from a porphyry system: The Morococha District, Peru. Ore Geol. Rev. 2021, 136, 104236. [Google Scholar] [CrossRef]
- Cugerone, A.; Cenki-Tok, B.; Oliot, E.; Muñoz, M.; Barou, F.; Motto-Ros, V.; Le Goff, E. Redistribution of germanium during dynamic recrystallization of sphalerite. Geology 2020, 48, 236–241. [Google Scholar] [CrossRef]
- Torró, L.; Millán-Nuñez, A.J.; Benites, D.; González-Jiménez, J.M.; Laurent, O.; Tavazzani, L.; Vallance, J.; Chelle-Michou, C.; Proenza, J.A.; Flores, C.; et al. Germanium- and gallium-rich sphalerite in Mississippi Valley–type deposits: The San Vicente district and the Shalipayco deposit, Peru. Miner. Depos. 2023, 58, 853–880. [Google Scholar] [CrossRef]
- Erlandsson, V.B.; Foltyn, K.; Muchez, P.; Rantitsch, G.; Ellmies, R.; Melcher, F. Chalcopyrite, sphalerite, and pyrite chemistry in stratiform sediment-hosted Cu(-Co) metallogenic districts: Trace element characteristics and factors controlling polymetallic mineralization. Miner. Depos. 2024, 60, 869–894. [Google Scholar] [CrossRef]
- Frenzel, M.; Röhner, M.; Cook, N.J.; Gilbert, S.; Ciobanu, C.L.; Güven, J.F. Mineralogy, mineral chemistry, and genesis of Cu-Ni-As-rich ores at Lisheen, Ireland. Miner. Depos. 2024, 60, 113–143. [Google Scholar] [CrossRef]
- Frenzel, M.; Thiele, S.T. Deceptively critical sphalerite. Nat. Geosci. 2024, 17, 1199. [Google Scholar] [CrossRef]
- Yuan, W.; Chen, J.B.; Teng, H.; Chetelat, B.; Cai, H.M.; Liu, J.C.; Wang, Z.C.; Bouchez, J.; Moynier, F.; Gaillardet, J.; et al. A Review on the Elemental and Isotopic Geochemistry of Gallium. Glob. Biogeochem. Cycles 2021, 35, 1–27. [Google Scholar] [CrossRef]
- Fougerouse, D.; Cugerone, A.; Reddy, S.M.; Luo, K.; Motto-Ros, V. Nanoscale distribution of Ge in Cu-rich sphalerite. Geochim. Cosmochim. Acta 2023, 346, 223–230. [Google Scholar] [CrossRef]
- Cugerone, A.; Salvi, S.; Kouzmanov, K.; Laurent, O.; Cenki, B. Tracing fluid signature and metal mobility in complex orogens: Insights from Pb–Zn mineralization in the Pyrenean Axial Zone. Miner. Depos. 2024, 60, 955–977. [Google Scholar] [CrossRef]
- Cugerone, A.; Oliot, E.; Muñoz, M.; Barou, F.; Motto-Ros, V.; Cenki, B. Plastic deformation and trace element mobility in sphalerite. Am. Mineral. 2024, 109, 1888–1912. [Google Scholar] [CrossRef]
- Luo, K.; Cugerone, A.; Fougerouse, D.; Zhou, J.X.; Xian, H.; Yang, Y.; Saxey, D.W.; Motto-Ros, V.; Sun, X.; Rickard, W.D.A.; et al. Rapid crystal growth promotes the precipitation of nanoscale fluid inclusions rich in halogens and metals in colloform sphalerite. Geochim. Cosmochim. Acta 2025, 398, 119–138. [Google Scholar] [CrossRef]
- Bonnet, J.; Mosser-Ruck, R.; Caumon, M.; Rouer, O.; Andre-Mayer, A.; Cauzid, J.; Peiffert, C. Trace element distribution (Cu, Ga, Ge, Cd, and Fe) in sphalerite from the Tennessee MVT deposits, USA, by combined EMPA, LA-ICP-MS, Raman spectroscopy, and crystallography. Can. Mineral. 2016, 54, 1261–1284. [Google Scholar] [CrossRef]
- Sahlström, F.; Arribas, A.; Dirks, P.; Corral, I.; Chang, Z. Mineralogical distribution of germanium, gallium and indium at the Mt Carlton high-sulfidation epithermal deposit, NE Australia, and comparison with similar deposits worldwide. Minerals 2017, 7, 213. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoo, B.C.; Yang, Y.S.; Seo, J.H.; Kim, J.U.; Oh, J.H.; Kim, J.H. Indium and gallium enrichments in zinc orebodies in the Taebaeksan region, Korea. Episodes 2022, 45, 37–49. [Google Scholar] [CrossRef]
- Graupner, T.; Henning, S.; Goldmann, S.; Fuchs, S.; Stedingk, K.; Liessmann, W.; Birkenfeld, S. The In-Ga-Sb association of the post-Variscan Zn-Pb-Ag vein deposit at Lautenthal, Upper Harz Mountains, Germany: Sphalerite mineral chemistry. Miner. Depos. 2024, 59, 1363–1386. [Google Scholar] [CrossRef]
- Cave, B.; Payten, T. Distribution of critical minerals in the Mount Evelyn Pb–Zn–Ag skarn deposit, Pine Creek Orogen, Northern Territory. Aust. J. Earth Sci. 2025, 72, 375–389. [Google Scholar] [CrossRef]
- Huston, D.L.; Bastrakov, E. Germanium, indium, gallium and cadmium in zinc ores: A mineral system approach. Aust. J. Earth Sci. 2024, 71, 1125–1155. [Google Scholar] [CrossRef]
- Šoster, A.; Erlandsson, V.B.; Velojić, M.; Gopon, P. Ultraviolet-photoluminescence and trace element analyses in Ga-rich sphalerite from the Djebel Gustar Zn-Pb deposit, Algeria. Ore Geol. Rev. 2023, 157, 105474. [Google Scholar] [CrossRef]
- Yuan, S.D.; Peng, J.T.; Hao, S.; Li, H.M.; Geng, J.Z.; Zhang, D.L. In situ LA–MC–ICP–MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geol. Rev. 2011, 43, 235–242. [Google Scholar] [CrossRef]
- Mao, J.W.; Cheng, Y.B.; Chen, M.H.; Pirajno, F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Miner. Depos. 2013, 48, 267–294. [Google Scholar]
- Zhang, Y.; Shao, Y.J.; Liu, Q.Q.; Chen, H.Y.; Quan, W.; Sun, A.X. Jurassic magmatism and metallogeny in the eastern Qin-Hang Metallogenic Belt, SE China: An example from the Yongping Cu deposit. J. Geochem. Explor. 2018, 186, 281–297. [Google Scholar] [CrossRef]
- Hu, X.L.; Gong, Y.J.; Pi, D.H.; Zhang, Z.J.; Zeng, G.P.; Xiong, S.F.; Yao, S.Z. Jurassic magmatism related Pb-Zn-W-Mo polymetallic mineralization in the central Nanling Range, South China: Geochronologic, geochemical, and isotopic evidence from the Huangshaping deposit. Ore Geol. Rev. 2017, 91, 877–895. [Google Scholar] [CrossRef]
- Li, D.F.; Tan, C.Y.; Miao, F.Y.; Liu, Q.F.; Zhang, Y.; Sun, X.M. Initiation of Zn–Pb mineralization in the Pingbao Pb–Zn skarn district, South China: Constraints from U–Pb dating of grossular-rich garnet. Ore Geol. Rev. 2019, 107, 587–599. [Google Scholar] [CrossRef]
- Zhao, L.J.; Zhang, Y.; Shao, Y.J.; Li, H.B.; Shah, S.A.; Zhou, W.J. Using garnet geochemistry discriminating different skarn mineralization systems: Perspective from Huangshaping W–Mo–Sn–Cu polymetallic deposit, South China. Ore Geol. Rev. 2021, 138, 104412. [Google Scholar] [CrossRef]
- Zhao, L.J.; Shao, Y.J.; Zhang, Y.; Li, H.B.; Shah, S.A. Differentiated enrichment of magnetite in the Jurassic W–Sn and Cu skarn deposits in the Nanling Range (South China) and their ore-forming processes: An example from the Huangshaping deposit. Ore Geol. Rev. 2022, 148, 105046. [Google Scholar] [CrossRef]
- Zhang, J.K.; Shao, Y.J.; Liu, Z.F.; Chen, K. Sphalerite as a record of metallogenic information using multivariate statistical analysis: Constraints from trace element geochemistry. J. Geochem. Explor. 2022, 232, 106883. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.K.; Yu, P.P.; Wu, Y.H.; Huang, Y.; Tan, Z.J. Physicochemical condition of the Dafang skarn Au-Ag-Zn-Pb polymetallic deposit in the Nanling Metallogenic Belt (South China), a perspective from sphalerite mineralogy and geochemistry. Ore Geol. Rev. 2024, 165, 105923. [Google Scholar] [CrossRef]
- Kim, H.; Shin, D.; Im, H.; Yu, B.; Choi, S. Distribution of indium and gallium in sphalerite from skarn and hydrothermal vein deposits in the Hwanggangri mineralized district, South Korea. J. Geochem. Explor. 2024, 259, 107418. [Google Scholar] [CrossRef]
- Zhou, X.M.; Sun, T.; Shen, W.Z.; Shu, L.S.; Niu, Y.L. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A Response to Tectonic Evolution. Episodes 2006, 29, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.J.; Shao, Y.J.; Zhang, Y.; Liu, L.Y.; Zhang, S.T.; Zhao, H.T.; Li, H.B. Pyrite geochemical fingerprinting on skarn ore-forming processes: A case study from the Huangshaping W–Sn–Cu–Pb–Zn deposit in the Nanling Range, South China. J. Geochem. Explor. 2024, 262, 107474. [Google Scholar] [CrossRef]
- Zhao, G.C.; Cawood, P.A. Precambrian geology of China. Precambrian Res. 2012, 222–223, 13–54. [Google Scholar] [CrossRef]
- Zhou, M.F.; Yan, D.P.; Kennedy, A.K.; Li, Y.Q.; Ding, J. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet. Sci. Lett. 2002, 196, 51–67. [Google Scholar] [CrossRef]
- Hu, R.Z.; Wei, W.F.; Bi, X.W.; Peng, J.T.; Qi, Y.L.; Wu, L.Y.; Chen, Y.W. Molybdenite Re–Os and muscovite 40Ar/39Ar dating of the Xihuashan tungsten deposit, central Nanling district, South China. Lithos 2012, 150, 111–118. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Guo, C.L.; Chen, Y.C. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrolog. Sin. 2007, 23, 2329–2338, (In Chinese with English abstract). [Google Scholar]
- Mao, J.W.; Xie, G.Q.; Guo, C.L.; Yuan, S.D.; Cheng, Y.B.; Chen, Y.C. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. J. China Univ. Geosci. 2008, 14, 510–526, (In Chinese with English abstract). [Google Scholar]
- Mao, J.W.; Chen, M.H.; Yuan, S.D.; Guo, C.L. Geological Characteristics of the Qinhang (or Shihang) Metallogenic Belt in South China and Spatial-Temporal Distribution Regularity of Mineral Deposits. Acta Geol. Sin. 2011, 85, 636–658, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.; Song, S.L.; Hollings, P.; Li, D.F.; Shao, Y.J.; Chen, H.Y.; Zhao, L.J.; Kamo, S.; Jin, T.; Yuan, L.L.; et al. In-situ U–Pb geochronology of vesuvianite in skarn deposits. Chem. Geol. 2022, 612, 121136. [Google Scholar] [CrossRef]
- Tan, F.C.; Kong, H.; Liu, B.; Wu, Q.H.; Chen, S.F. In Situ U-Pb Dating and Trace Element Analysis of Garnet in the Tongshanling Cu Polymetallic Deposit, South China. Minerals 2023, 13, 187. [Google Scholar] [CrossRef]
- Tan, F.C.; Kong, H.; Liu, B.; Wu, Q.H.; Yang, Q.Z. Timing and genesis of the Tongshanling stratiform W-Mo skarn deposit in Hunan Province: Implications for exploration. Bull. Geol. Sci. Technol. 2024, 43, 123–142, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.X.; Li, H.; Sun, W.D.; Ireland, T.; Tian, X.F.; Hu, Y.B.; Yang, W.B.; Chen, C.; Xu, D.R. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W–Sn mineralization and tectonic evolution. Lithos 2016, 266–267, 435–452. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Z.Z.; Lu, Y.Y.; Li, J.F.; Fu, J.M.; Chen, X.Q.; Zhou, N.F. Magma evolution sequence and genesis of the Qitianling pluton in Nanling Range. Acta Geol. Sin. 2024, 99, 1606–1631, (In Chinese with English abstract). [Google Scholar]
- Liu, X.; Wang, Q.; Ma, L.; Wyman, D.A.; Zhao, Z.H.; Yang, J.H.; Zi, F.; Tang, G.J.; Dan, W.; Zhou, J.S. Petrogenesis of Late Jurassic Pb–Zn mineralized high δ18O granodiorites in the western Nanling Range, South China. J. Asian Earth Sci. 2020, 192, 104236. [Google Scholar] [CrossRef]
- Wu, J.H.; Kong, H.; Li, H.; Thomas, J.; Algeo, C.D.E.; Kotaro, Y.; Liu, B.; Wu, Q.H.; Zhu, D.P.; Jiang, H. Multiple metal sources of coupled Cu-Sn deposits: Insights from the Tongshanling polymetallic deposit in the Nanling Range, South China. Ore Geol. Rev. 2021, 139, 104521. [Google Scholar] [CrossRef]
- Wang, K.X.; Zhai, D.G.; Liu, J.J.; Wu, H. LA-ICP-MS trace element analysis of pyrite from the Dafang gold deposit, South China: Implications for ore genesis. Ore Geol. Rev. 2021, 139, 104507. [Google Scholar] [CrossRef]
- Zhu, D.P.; Li, H.; Tamehe, L.S.; Jiang, W.C.; Wang, C.; Wu, K.Y. Two-stage Cu–Pb–Zn mineralization of the Baoshan deposit in southern Hunan, South China: Constraints from zircon and pyrite geochronology and geochemistry. J. Geochem. Explor. 2022, 241, 107070. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Fu, J.M.; Tan, S.M.; Cheng, S.B.; Guo, Z.Y.; Qin, Z.W.; Liu, B.D.; Ma, L.Y. Zircon U-Pb Dating, Hf isotopic compositions and their prospecting signification of the granodiorite porphyry from Dafang Au-Ag-Pb-Zn deposit, Southern Hunan province. Geol. Min. Resour. South China 2017, 133, 262–274, (In Chinese with English abstract). [Google Scholar]
- Ding, T.; Tan, T.; Wang, J.; Ma, D.; Lu, J.; Zhang, R.; Liang, J. Trace-element composition of pyrite in the Baoshan Cu–Mo–Pb–Zn deposit, southern Hunan Province, China: Insights into the ore genesis. Ore Geol. Rev. 2022, 147, 104989. [Google Scholar] [CrossRef]
- Ding, T.; Tan, T.; Wang, J.; Ma, D.; Lu, J.; Zhang, R.; Liang, J.; Wu, B. Multiple sources for the Baoshan polymetallic Cu–Mo–Pb–Zn deposit, southern Hunan Province, China: Insights from in situ LA–MC–ICP–MS sulfur isotopic compositions. Ore Geol. Rev. 2022, 143, 104808. [Google Scholar] [CrossRef]
- Wang, K.X.; Zhai, D.G.; Zhang, L.L.; Li, C.; Liu, J.J.; Wu, H. Calcite U-Pb, pyrite Re-Os geochronological and fluid inclusion and H-O isotope studies of the Dafang gold deposit, South China. Ore Geol. Rev. 2022, 150, 105183. [Google Scholar] [CrossRef]
- Jiang, H.; Kong, H.; Liu, B.; Tan, F.C.; Qin, Y.X.; Huang, J.G.; Zhu, Y. Garnet and Zircon U-Pb Geochronology and Geochemistry Reveal Genesis of the Dafang Au-Pb-Zn-Ag Deposit, Southern Hunan. Acta Geol. Sin. 2024, 98, 717–735. [Google Scholar] [CrossRef]
- Li, B.; Li, N.X.; Yang, J.N.; Zhang, W.D.; Liu, J.P. Genesis of the Xianghualing tin-polymetallic deposit in southern Hunan, South China: Constraints from chemical and boron isotopic compositions of tourmaline. Ore Geol. Rev. 2023, 154, 105303. [Google Scholar] [CrossRef]
- Ma, X.H.; Guo, F.S.; Leng, C.B.; Li, K.X.; Gao, F.F.; Chen, S.L.; Ren, Z.; Tian, Z.D. Study on the occurrence state and enrichment patterns of indium in the Xianghualing Sn-Pb-Zn ore field in southern Hunan. Acta Petrolog. Sin. 2023, 39, 3087–3106, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualization and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Johan, Z. Indium and germanium in the structure of sphalerite: An example of coupled substitution with copper. Mineral. Petrol. 1988, 39, 211–229. [Google Scholar] [CrossRef]
- Benedetto, R.D.; Bernardini, G.P.; Costagliola, P.; Plant, D.; Vaughan, D.J. Compositional zoning in sphalerite crystals. Am. Mineral. 2005, 90, 1384–1392. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini-Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Duan, H.Y.; Wang, C.M.; Hu, R.; Zhu, J.X.; Deng, J. Supernormal enrichment of cadmium in sphalerite via coupled dissolution-reprecipitation process. Commun. Earth Environ. 2023, 4, 356. [Google Scholar] [CrossRef]
- Fontboté, L.; Kouzmanov, K.; Chiaradia, M.; Pokrovski, G.S. Sulfide Minerals in Hydrothermal Deposits. Elements 2017, 13, 97–103. [Google Scholar] [CrossRef]
- Voute, F.; Hagemann, S.G.; Evans, N.J.; Villanes, C. Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: Implication for paragenesis, fluid source, and gold deposition mechanisms. Miner. Depos. 2019, 54, 1077–1100. [Google Scholar] [CrossRef]
- Keith, M.; Haase, K.M.; Chivas, A.R.; Klemd, R. Phase separation and fluid mixing revealed by trace element signatures in pyrite from porphyry systems. Geochim. Cosmochim. Acta 2022, 329, 185–205. [Google Scholar] [CrossRef]
- Belousov, I.; Large, R.R.; Meffre, S.; Danyushevsky, L.V.; Steadman, J.; Beardsmore, T. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration. Ore Geol. Rev. 2016, 79, 474–499. [Google Scholar] [CrossRef]
- Shen, H.J.; Zhang, Y.; Pan, Z.; Shao, Y.J.; Brzozowski, M.J.; Zhao, L.J.; Liu, G.Q.; Liu, Q.Q.; Shi, J.; Wang, X.; et al. Newly discovered Early Cretaceous Au mineralization overprinting Late Jurassic Pb-Zn-Ag mineralization in the Qin-Hang metallogenic belt (South China). Geol. Soc. Am. Bull. 2025, 137, 1021–1036. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Brugger, J.; Etschmann, B.; Howard, D.L.; De Jonge, M.D.; Ryan, C.; Paterson, D. Determination of the oxidation state of Cu in substituted Cu In-Fe-bearing sphalerite via μ-XANES spectroscopy. Am. Mineral. 2012, 97, 476–479. [Google Scholar] [CrossRef]
- Belissont, R.; Boiron, M.; Luais, B.; Cathelineau, M. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac-Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes. Geochim. Cosmochim. Acta 2014, 126, 518–540. [Google Scholar] [CrossRef]
- Belissont, R.; Muñoz, M.; Boiron, M.C.; Boiron, M.C.; Luais, B.; Mathon, O. Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: Insights into Ge incorporation, partitioning and isotopic fractionation. Geochim. Cosmochim. Acta 2016, 177, 298–314. [Google Scholar] [CrossRef]
- Li, Y.G.; Zhu, C.W. The distribution signatures of major and trace elements in zoned sphalerite from lead-zinc deposits: A case study from the Huize deposit. Acta Mineral. Sin. 2020, 40, 765–771, (In Chinese with English abstract). [Google Scholar]
- Sun, X.Y.; Sun, W.Y. Trace and minor elements in sphalerite: A study of gallium and indium. Adv. Geosci. 2021, 11, 60–93, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Henning, S.; Graupner, T.; Krassmann, T.; Gäbler, H.E.; Goldmann, S.; Kus, J.; Onuk, P. Processes of enrichment of trace metals for high tech applications in hydrothermal veins of the Ruhr Basin and the Rhenish Massif, Germany. Can. Mineral. 2022, 60, 881–912. [Google Scholar] [CrossRef]
- Yellishetty, M.; Huston, D.; Graedel, T.E.; Werner, T.T.; Reck, B.K.; Mudd, G.M. Quantifying the potential for recoverable resources of gallium, germanium and antimony as companion metals in Australia. Ore Geol. Rev. 2017, 82, 148–159. [Google Scholar] [CrossRef]
- Bauer, M.E.; Burisch, M.; Ostendorf, J.; Krause, J.; Seifert, T.; Gutzmer, J. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Miner. Depos. 2019, 52, 237–262. [Google Scholar]
- Wang, X.H.; Zheng, Y.; Yu, P.P.; Chen, X.; Wu, Y.H.; Huang, Y.; Long, L.J.; Shu, L.H.; Chen, M.X.; Guo, L.X. Temperature as a major control on Cd enrichment in a skarn system: A case study of the Yiliu Pb-Zn-As deposit, South China. Ore Geol. Rev. 2024, 165, 105920. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, P.; Li, Z.; Xiong, S.; Zhou, L.; Zhou, J.; Wang, C.; Meng, Y.; Zhang, Y.; Wang, Y.; et al. Critical Metals Ga, Ge and In in the Global Pb–Zn Deposits: Current Understanding, Challenges and Perspectives. J. Earth Sci. 2023, 34, 1308–1311. [Google Scholar] [CrossRef]
- Luo, K.; Cugerone, A.; Zhou, M.F.; Zhou, J.X.; Sun, G.T.; Xu, J.; He, K.J.; Lu, M.D. Germanium enrichment in sphalerite with acicular and euhedral textures: An example from the Zhulingou carbonate-hosted Zn(-Ge) deposit, South China. Miner. Depos. 2022, 57, 1343–1365. [Google Scholar] [CrossRef]
- Ye, L.; Cook, N.J.; Ciobanu, C.L.; Yuping, L.; Zhang, Q.; Tiegeng, L.; Wei, G.; Yulong, Y.; Danyushevsky, L.V. Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study. Ore Geol. Rev. 2011, 39, 188–217. [Google Scholar] [CrossRef]
- Dai, H.Z. Geological and Geochemical Characteristics and Metallogenetic Mechanism of the Taiping Pb–Zn Deposit, Yunnan Province. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2016. (In Chinese with English abstract). [Google Scholar]
- Wen, H.; Zhu, C.; Zhang, Y.; Cloquet, C.; Fan, H.; Fu, S. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Sci. Rep. 2016, 6, 25273. [Google Scholar] [CrossRef]
- Wei, C.; Ye, L.; Huang, Z.L.; Gao, W.; Hu, Y.S.; Li, Z.L.; Zhang, J.W. Ore genesis and geodynamic setting of Laochang Ag–Pb–Zn–Cu deposit, Southern Sanjiang Tethys Metallogenic Belt, China: Constraints from whole rock geochemistry, trace elements in sphalerite, zircon U–Pb dating and Pb isotopes. Minerals 2018, 8, 516. [Google Scholar] [CrossRef]
- Frenzel, M.; Hirsch, T.; Gutzmer, J. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type-a meta-analysis. Ore Geol. Rev. 2016, 76, 52–78. [Google Scholar] [CrossRef]
- Frenzel, M.; Voudouris, P.; Cook, N.J.; Ciobanu, C.L.; Gilbert, S.E.; Wade, B. Evolution of a hydrothermal ore-forming system recorded by sulfide mineral chemistry: A case study from the Plaka Pb–Zn–Ag Deposit, Lavrion, Greece. Miner. Depos. 2021, 57, 417–438. [Google Scholar] [CrossRef]
- Zhao, H.T.; Zhang, Y.; Shao, Y.J.; Liao, J.; Song, S.L.; Cao, G.S.; Tan, R.C. A New Sphalerite Thermometer Based on Machine Learning with Trace Element Geochemistry. Nat. Resour. Res. 2024, 33, 2609–2626. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Ai, G.L.; Xue, X.L.; Li, H.B.; Sajjad, A.S.; Wang, N.H.; Chen, X. LA–ICP–MS trace element geochemistry of sphalerite: Metallogenic constraints on the Qingshuitang Pb–Zn deposit in the Qinhang Ore Belt, South China. Ore Geol. Rev. 2022, 141, 104659. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zheng, Y.; Yu, P.P.; Chen, X.; Guo, L.X.; Long, L.J.; Hu, Z.B.; Huang, Y.; Chen, M.X.; Lu, J.J.; et al. The world-class carbonate-hosted Fankou Zn-Pb deposit in China. Part III. Critical metal Ga is enriched in late stage and low temperature sphalerite. Ore Geol. Rev. 2024, 166, 105928. [Google Scholar] [CrossRef]
- Scott, S.D.; Barnes, H.L. Sphalerite geothermometry and geobarometry. Econ. Geol. 1971, 66, 653–669. [Google Scholar] [CrossRef]
- Keith, M.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R.; Petersen, S.; Bach, W. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology 2014, 42, 699–702. [Google Scholar] [CrossRef]
- Schaarschmidt, A.; Haase, K.M.; Klemd, R.; Keith, M.; Voudouris, P.; Alfieris, D.; Strauss, H.; Wiedenbeck, M. Boiling effects on trace element and sulfur isotope compositions of sulfides in shallow-marine hydrothermal systems: Evidence from Milos Island, Greece. Chem. Geol. 2021, 583, 120457. [Google Scholar] [CrossRef]
- Ye, L.; Li, Z.; Hu, Y.; Huang, Z.; Zhou, J.; Fan, H.; Danyushevskiy, L. Trace elements in sulfide from the Tianbaoshan Pb–Zn deposit, Sichuan Province, China: A LA-ICP-MS study. Acta Petrolog. Sin. 2016, 32, 3377–3393, (In Chinese with English abstract). [Google Scholar]
- Wei, C.; Ye, L.; Hu, Y.; Danyushevskiy, L.; Li, Z.; Huang, Z. Distribution and occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn–Pb deposit, northeastern Yunnan, China: Insights from SEM and LA–ICP–MS studies. Ore Geol. Rev. 2019, 115, 103175. [Google Scholar] [CrossRef]
- Shen, H.J.; Zhang, Y.; Zuo, C.H.; Shao, Y.J.; Zhao, L.J.; Lei, J.Z.; Shi, G.W.; Han, R.Y.; Zheng, X.Y. Ore-forming process revealed by sphalerite texture and geochemistry: A case study at the Kangjiawan Pb–Zn deposit in Qin-Hang Metallogenic Belt, South China. Ore Geol. Rev. 2022, 150, 105153. [Google Scholar] [CrossRef]
- Hu, Y.S.; Ye, L.; Wei, C.; Li, Z.L.; Huang, Z.L.; Wang, H.Y. Trace Elements in Sphalerite from the Dadongla Zn–Pb Deposit, Western Hunan–Eastern Guizhou Zn-Pb Metallogenic Belt, South China. Acta Geol. Sin. 2020, 94, 2152–2164. [Google Scholar] [CrossRef]
- Leach, D.L.; Sangster, D.F. Mississippi Valley-Type Lead-Zinc Deposits; Geological Association of Canada Special Paper 40; Geological Association of Canada: St. John’s, NL, Canada, 1993; pp. 289–314. [Google Scholar]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S. Sediment-hosted lead-zinc deposits: A global perspective. Econ. Geol. 2005, 561–607. [Google Scholar] [CrossRef]
- Leach, D.L.; Bradley, D.C.; Huston, D.; Pisarevsky, S.A.; Taylor, R.D.; Gardoll, S.J. Sediment-hosted lead-zinc deposits in Earth history. Econ. Geol. 2010, 105, 593–625. [Google Scholar] [CrossRef]
- Basuki, N.I.; Spooner, E.T.C. A Review of Fluid Inclusion Temperatures and Salinities in Mississippi Valley-Type Zn–Pb Deposits: Identifying Thresholds for Metal Transport. Expl. Min. Geol. 2002, 11, 1–17. [Google Scholar] [CrossRef]
- Einaudi, M.T.; Hedenquist, J.W.; Inan, E.E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transition from porphyry to epithermal environments. Econ. Geol. 2003, 285–313. [Google Scholar] [CrossRef]
- Zeng, Q.W.; Shu, Q.H.; Wang, Q.F.; Zhang, Q.; Zhao, Z.H.; Niu, X.D.; Yu, F.; Zhang, L.T.; Deng, J. Genetic types of Zn-Pb deposits revealed by sphalerite geochemistry. Am. Mineral. 2025. [Google Scholar] [CrossRef]
- Sundblad, K. A genetic reinterpretation of the Falun and Åmmeberg ore types, Bergslagen, Sweden. Miner. Depos. 1994, 29, 170–179. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L. Bismuth tellurides and sulphosalts from the Larga hydrothermal system, Metaliferi Mts, Romania: Paragenesis and genetic significance. Mineral. Mag. 2004, 68, 301–321. [Google Scholar] [CrossRef]
- Grammatikopoulos, T.A.; Valeyev, O.; Roth, T. Compositional variation in Hg-bearing sphalerite from the polymetallic Eskay Creek deposit, British Columbia, Canada. Geochemistry 2006, 66, 307–314. [Google Scholar] [CrossRef]
- George, L.; Cook, N.J.; Ciobanu, C.L.; Wade, B.P. Trace and minor elements in galena: A reconnaissance LA-ICP-MS study. Am. Mineral. 2015, 100, 548–569. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, C.Q.; Yu, H.J.; Yang, Y.M.; Zhao, Y.X.; Zhu, C.C.; Ding, Q.F.; Yang, J.C.; Xu, Y. Element enrichment characteristics: Insights from element geochemistry of sphalerite in Daliangzi Pb–Zn deposit, Sichuan, Southwest China. J. Geochem. Explor. 2018, 186, 187–201. [Google Scholar] [CrossRef]
- Mishra, B.P.; Pati, P.; Dora, M.L.; Baswani, T.M.; Shareef, M.; Pattanayak, R.S.; Suryavanshi, H.; Mishra, M.; Raza, M.A. Trace-element systematics and isotopic characteristics of sphalerite-pyrite from volcanogenic massive sulfide deposits of Betul belt, central Indian Tectonic Zone: Insight of ore genesis to exploration. Ore Geol. Rev. 2021, 134, 104149. [Google Scholar] [CrossRef]
- Oyebamiji, A.; Falae, P.; Zafar, T.; Rehman, H.U.; Oguntuase, M. Genesis of the Qilinchang Pb–Zn deposit, southwestern China: Evidence from mineralogy, trace elements systematics and S–Pb isotopic characteristics of sphalerite. Appl. Geochem. 2023, 148, 105545. [Google Scholar] [CrossRef]
- Niu, P.P.; Muñoz, M.; Mathon, O.; Xiong, S.F.; Jiang, S.Y. Mechanism of germanium enrichment in the world-class Huize MVT Pb–Zn deposit, southwestern China. Miner. Depos. 2024, 59, 995–1016. [Google Scholar] [CrossRef]
- Tan, Z.J.; Zheng, Y.; Yu, P.; Li, R.; Huang, Y.; Ding, W.; Wu, Y.; Chen, M.; Sun, L.; Wang, Z.; et al. Indium concentrations as a potential indicator of orebody-intrusion distance in a skarn Pb–Zn system, elucidated by the Fozichong Orefield (South China). Ore Geol. Rev. 2024, 165, 105912. [Google Scholar] [CrossRef]





| Sample No. | Mineral Assemblages | Description |
|---|---|---|
| ZKB801-5 | Qz-Py-Gn-Sp | Euhedral-subhedral pyrite intergrown with sphalerite and galena |
| ZKB801-6 | Qz-Py-Gn-Sp | Pyrite with some galena and sphalerite |
| ZKB801-7 | Qz-Py-Gn-Sp | Pyrite intergrown with sphalerite and galena |
| ZKB801-9 | Qz-Sp | Quartz-bearing massive sphalerite ore |
| ZKB801-10 | Qz-Sp | Some sphalerite intergrown with quartz |
| ZKB801-11 | Qz-Py-Sp | Quartz-bearing massive pyrite and sphalerite |
| ZKB801-12 | Qz-Py-Sp | Euhedral-subhedral sphalerite intergrown with pyrite |
| ZKB801-13 | Qz-Py-Sp | Some pyrite intergrown with sphalerite |
| Samples | Points | S | Zn | Ga | Fe | Cu | Ge | Ag | Cd | In | Sn | Sb | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | wt.% | ||
| ZKB801-5 | 1 | 32.30 | 65.28 | 0.10 | 1.22 | <LOD | <LOD | <LOD | 0.28 | <LOD | <LOD | 0.01 | 99.18 |
| ZKB801-5 | 2 | 32.41 | 65.38 | 0.03 | 1.57 | 0.03 | <LOD | 0.02 | 0.29 | <LOD | 0.01 | 0.01 | 99.74 |
| ZKB801-5 | 3 | 33.12 | 65.50 | 0.07 | 1.07 | 0.06 | <LOD | <LOD | 0.24 | <LOD | 0.01 | <LOD | 100.07 |
| ZKB801-6 | 4 | 32.48 | 65.67 | 0.05 | 1.04 | 0.06 | <LOD | <LOD | 0.26 | <LOD | <LOD | <LOD | 99.57 |
| ZKB801-6 | 5 | 32.68 | 65.24 | 0.18 | 1.23 | 0.08 | <LOD | <LOD | 0.27 | 0.01 | 0.01 | <LOD | 99.69 |
| ZKB801-6 | 6 | 32.50 | 64.79 | 0.08 | 1.17 | 0.09 | <LOD | 0.01 | 0.25 | <LOD | 0.01 | <LOD | 98.91 |
| ZKB801-7 | 7 | 33.21 | 64.89 | 0.10 | 0.90 | 0.07 | 0.02 | <LOD | 0.26 | <LOD | 0.01 | 0.02 | 99.47 |
| ZKB801-7 | 8 | 32.59 | 64.84 | 0.09 | 1.99 | <LOD | <LOD | <LOD | 0.24 | <LOD | 0.01 | <LOD | 99.76 |
| ZKB801-7 | 9 | 32.41 | 64.84 | 0.12 | 1.28 | <LOD | <LOD | 0.02 | 0.27 | <LOD | 0.02 | <LOD | 98.95 |
| ZKB801-7 | 10 | 32.69 | 64.38 | <LOD | 1.98 | 0.04 | <LOD | <LOD | 0.25 | <LOD | <LOD | 0.01 | 99.35 |
| Mean values | 32.64 | 65.08 | 0.09 | 1.35 | 0.06 | 0.02 | 0.02 | 0.26 | 0.01 | 0.01 | 0.01 | 99.47 | |
| Samples | Points | Mn | Fe | Co | Ni | Cu | Ga | Ge | Se | Mo | Ag | Cd | In | Sn | Sb | Pb | Bi |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ||
| ZKB801-5 | 1 | 13.1 | 2209 | 0.544 | 0.241 | 1308 | 303 | 227 | 0.357 | 0.018 | 2.15 | 2589 | 45.7 | 14.8 | 0.516 | 142 | 0.256 |
| ZKB801-5 | 2 | 6.07 | 2353 | 0.412 | 0.586 | 1017 | 385 | 199 | 1.78 | b.d.l. | 1.62 | 2519 | 41.9 | 7.38 | 0.891 | 117 | 0.221 |
| ZKB801-5 | 3 | 6.34 | 2412 | 0.451 | 0.441 | 530 | 116 | 57.0 | 1.24 | b.d.l. | 1.33 | 2502 | 33.6 | 1.81 | 0.206 | 79.7 | 0.123 |
| ZKB801-5 | 4 | 17.0 | 2224 | 0.441 | 0.411 | 691 | 223 | 101 | 0.409 | b.d.l. | 1.78 | 2457 | 36.7 | 8.75 | 0.387 | 90.0 | 0.176 |
| ZKB801-6 | 5 | 6.67 | 2386 | 0.545 | 0.523 | 385 | 98.8 | 33.7 | 1.64 | 0.007 | 1.06 | 2436 | 28.2 | 1.89 | 0.115 | 45.5 | 0.071 |
| ZKB801-6 | 6 | 7.53 | 2472 | 0.607 | 0.623 | 295 | 80.0 | 20.4 | 0.637 | b.d.l | 0.95 | 2427 | 27.2 | 1.23 | 0.058 | 24.0 | 0.025 |
| ZKB801-6 | 7 | 8.98 | 2388 | 0.581 | 0.422 | 407 | 126 | 24.7 | 0.858 | b.d.l. | 0.936 | 2352 | 27.0 | 1.82 | 0.079 | 29.1 | 0.030 |
| ZKB801-6 | 8 | 5.95 | 2870 | 1.49 | 0.732 | 266 | 116 | 34.5 | 1.61 | b.d.l. | 0.845 | 2400 | 16.1 | 8.25 | b.d.l. | 41.7 | 0.012 |
| ZKB801-6 | 9 | 14.7 | 2146 | 0.447 | 0.380 | 284 | 66.4 | 20.4 | 1.0 | b.d.l. | 1.07 | 2347 | 29.4 | 4.34 | 0.160 | 46.4 | 0.058 |
| ZKB801-7 | 10 | 15.7 | 2383 | 0.599 | 0.604 | 267 | 126 | 23.0 | 0.583 | 0.012 | 0.892 | 2334 | 26.0 | 3.09 | 0.068 | 21.0 | 0.034 |
| ZKB801-7 | 11 | 17.4 | 2402 | 0.526 | 0.566 | 319 | 119 | 26.9 | 1.05 | b.d.l. | 0.961 | 2269 | 26.8 | 4.89 | 0.067 | 25.3 | 0.032 |
| ZKB801-7 | 12 | 5.81 | 3216 | 2.88 | 0.843 | 221 | 136 | 25.0 | b.d.l. | 0.011 | 0.785 | 2330 | 8.96 | 7.53 | b.d.l. | 31.5 | 0.012 |
| ZKB801-7 | 13 | 9.12 | 3318 | 3.35 | 0.632 | 1506 | 198 | 21.0 | 2.28 | 0.443 | 0.887 | 2290 | 9.89 | 16.6 | 0.441 | 35.6 | 0.015 |
| ZKB801-7 | 14 | 18.7 | 3138 | 2.34 | 1.00 | 695 | 187 | 38.6 | 2.50 | 0.004 | 0.852 | 2312 | 14.8 | 5.01 | 0.002 | 32.0 | 0.012 |
| Median values | 9.05 | 2395 | 0.563 | 0.576 | 396 | 126 | 30.3 | 1.05 | 0.011 | 0.956 | 2376 | 27.1 | 4.95 | 0.137 | 38.7 | 0.033 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, F.; Shen, H.; He, Q.; Huang, S.; Liu, X.; Zhang, Y. The Discovery of MVT-like Ga-Enriched Sphalerite from the Zhaojinci Area in the South Hunan District (South China). Minerals 2025, 15, 1163. https://doi.org/10.3390/min15111163
Xiao F, Shen H, He Q, Huang S, Liu X, Zhang Y. The Discovery of MVT-like Ga-Enriched Sphalerite from the Zhaojinci Area in the South Hunan District (South China). Minerals. 2025; 15(11):1163. https://doi.org/10.3390/min15111163
Chicago/Turabian StyleXiao, Feiyun, Hongjie Shen, Qingrui He, Shihong Huang, Xiaoxi Liu, and Yu Zhang. 2025. "The Discovery of MVT-like Ga-Enriched Sphalerite from the Zhaojinci Area in the South Hunan District (South China)" Minerals 15, no. 11: 1163. https://doi.org/10.3390/min15111163
APA StyleXiao, F., Shen, H., He, Q., Huang, S., Liu, X., & Zhang, Y. (2025). The Discovery of MVT-like Ga-Enriched Sphalerite from the Zhaojinci Area in the South Hunan District (South China). Minerals, 15(11), 1163. https://doi.org/10.3390/min15111163
